Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
2.
J Mol Evol ; 88(6): 501-509, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32382786

RESUMO

Nanoarchaeum equitans is a species of hyperthermophilic archaea with the smallest genome size. Its alanyl-tRNA synthetase genes are split into AlaRS-α and AlaRS-ß, encoding the respective subunits. In the current report, we surveyed N. equitans AlaRS-dependent alanylation of RNA minihelices, composed only of the acceptor stem and the T-arm of tRNAAla. Combination of AlaRS-α and AlaRS-ß showed a strong alanylation activity specific to a single G3:U70 base pair, known to mark a specific tRNA for charging with alanine. However, AlaRS-α alone had a weak but appreciable alanylation activity that was independent of the G3:U70 base pair. The shorter 16-mer RNA tetraloop substrate mimicking only the first four base pairs of the acceptor stem of tRNAAla, but with C3:G70 base pair, was also successfully aminoacylated by AlaRS-α. The end of the acceptor stem, including CCA-3' terminus and the discriminator A73, was able to function as a minimal structure for the recognition by the enzyme. Our findings imply that aminoacylation by N. equitans AlaRS-α may represent a vestige of a primitive aminoacylation system, before the appearance of the G3:U70 pair as an identity element for alanine.


Assuntos
Alanina-tRNA Ligase , Aminoacil-tRNA Sintetases , Nanoarchaeota , Alanina-tRNA Ligase/genética , Alanina-tRNA Ligase/metabolismo , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Aminoacilação , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Nanoarchaeota/enzimologia , Nanoarchaeota/genética , Conformação de Ácido Nucleico , RNA
3.
Angew Chem Int Ed Engl ; 55(47): 14606-14609, 2016 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-27762089

RESUMO

The thermodynamic properties of a ligand in the bound state affect its binding specificity. Strict binding specificity can be achieved by introducing multiple spatially defined interactions, such as hydrogen bonds and van der Waals interactions, into the ligand-receptor interface. These introduced interactions are characterized by restricted local dynamics and improved surface complementarity in the bound state. In this study, we experimentally evaluated the local dynamics and the surface complementarity of weak-affinity ligands in the receptor-bound state by forbidden coherence transfer analysis in free-bound exchange systems (Ex-FCT), using the interaction between a ligand, a myocyte-enhancer factor 2A (MEF2A) docking peptide, and a receptor, p38α, as a model system. The Ex-FCT analyses successfully provided information for the rational design of a ligand with higher affinity and preferable thermodynamic properties for p38α.


Assuntos
Termodinâmica , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Humanos , Ligantes , Fatores de Transcrição MEF2/química , Fatores de Transcrição MEF2/metabolismo , Espectroscopia de Ressonância Magnética , Propriedades de Superfície , Proteínas Quinases p38 Ativadas por Mitógeno/química
4.
ChemMedChem ; 10(4): 736-41, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25760302

RESUMO

Numerous small organic compounds exist in equilibrium among monomers, soluble oligomers, and insoluble aggregates in aqueous solution. Compound aggregation is a major reason for false positives in drug screening, and even soluble oligomers can interfere with structural and biochemical analyses. However, an efficient way to manage the equilibrium of aggregation-prone compounds, especially those involved with soluble oligomers, has not been established. In this study, solution NMR spectroscopy was used as a suitable technique to detect compound oligomers in equilibrium, and it was demonstrated that cosolubilization of nondetergent sulfobetaines (NDSBs) can largely suppress compound oligomerization and aggregation by shifting the equilibrium toward the monomers. The rotational correlation time was obtained from the ratio of the selective and nonselective longitudinal NMR relaxation times, which directly and quantitatively reflected the apparent sizes of the compounds in the equilibrium. The rotational correlation time of the aggregation-prone compound SKF86002 (1 mM) was substantially reduced from 0.31 to 0.23 ns by cosolubilization of 100 mM NDSB195. NDSB cosolubilization allowed us to perform successful structural and biochemical experiments with substantially fewer artifacts, which represents a strategy to directly resolve the problematic oligomerization and aggregation of compounds.


Assuntos
Anti-Inflamatórios não Esteroides/química , Betaína/análogos & derivados , Imidazóis/química , Tiazóis/química , Betaína/química , Descoberta de Drogas , Espectroscopia de Ressonância Magnética , Solubilidade , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA