Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(6): 109954, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38827401

RESUMO

Hypertension is a major cause of morbidity and mortality in patients with hypertrophic cardiomyopathy (HCM), suggesting a potential role for mechanics in HCM pathogenesis. Here, we developed an in vitro physiological model to investigate how mechanics acts together with HCM-linked myosin binding protein C (MYBPC3) mutations to trigger disease. Micro-heart muscles (µHM) were engineered from induced pluripotent stem cell (iPSC)-derived cardiomyocytes bearing MYBPC3+/- mutations and challenged to contract against substrates of different elasticity. µHMs that worked against substrates with stiffness at or exceeding the stiffness of healthy adult heart muscle exhibited several hallmarks of HCM, including cellular hypertrophy, impaired contractile energetics, and maladaptive calcium handling. Remarkably, we discovered changes in troponin C and T localization in MYBPC3+/- µHM that were entirely absent in 2D culture. Pharmacologic studies suggested that excessive Ca2+ intake through membrane-embedded channels underlie the observed electrophysiological abnormalities. These results illustrate the power of physiologically relevant engineered tissue models to study inherited disease with iPSC technology.

2.
J Biomed Mater Res A ; 112(4): 534-548, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-37952251

RESUMO

Many types of cardiovascular disease are linked to the mechanical forces placed on the heart. However, our understanding of how mechanical forces exactly affect the cellular biology of the heart remains incomplete. In vitro models based on cardiomyocytes derived from human induced pluripotent stem cells (iPSC-CM) enable researchers to develop medium to high-throughput systems to study cardiac mechanobiology at the cellular level. Previous models have been developed to enable the study of mechanical forces, such as cardiac afterload. However, most of these models require exogenous extracellular matrix (ECM) to form cardiac tissues. Recently, a system was developed to simulate changes in afterload by grafting ECM-free micro-heart muscle arrays to elastomeric substrates of discrete stiffnesses. In the present study, we extended this system by combining the elastomer-grafted tissue arrays with a magnetorheological elastomeric substrate. This system allows iPSC-CM based micro-heart muscle arrays to experience dynamic changes in contractile resistance to mimic dynamically altered afterload. Acute changes in substrate stiffness led to acute changes in the calcium dynamics and contractile forces, illustrating the system's ability to dynamically elicit changes in tissue mechanics by dynamically changing contractile resistance.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Miócitos Cardíacos , Fenômenos Mecânicos , Matriz Extracelular , Contração Miocárdica
3.
bioRxiv ; 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37961198

RESUMO

Hypertrophic cardiomyopathy is the most common cause of sudden death in the young. Because the disease exhibits variable penetrance, there are likely nongenetic factors that contribute to the manifestation of the disease phenotype. Clinically, hypertension is a major cause of morbidity and mortality in patients with HCM, suggesting a potential synergistic role for the sarcomeric mutations associated with HCM and mechanical stress on the heart. We developed an in vitro physiological model to investigate how the afterload that the heart muscle works against during contraction acts together with HCM-linked MYBPC3 mutations to trigger a disease phenotype. Micro-heart muscle arrays (µHM) were engineered from iPSC-derived cardiomyocytes bearing MYBPC3 loss-of-function mutations and challenged to contract against mechanical resistance with substrates stiffnesses ranging from the of embryonic hearts (0.4 kPa) up to the stiffness of fibrotic adult hearts (114 kPa). Whereas MYBPC3 +/- iPSC-cardiomyocytes showed little signs of disease pathology in standard 2D culture, µHMs that included components of afterload revealed several hallmarks of HCM, including cellular hypertrophy, impaired contractile energetics, and maladaptive calcium handling. Remarkably, we discovered changes in troponin C and T localization in the MYBPC3 +/- µHM that were entirely absent in 2D culture. Pharmacologic studies suggested that excessive Ca 2+ intake through membrane-embedded channels, rather than sarcoplasmic reticulum Ca 2+ ATPase (SERCA) dysfunction or Ca 2+ buffering at myofilaments underlie the observed electrophysiological abnormalities. These results illustrate the power of physiologically relevant engineered tissue models to study inherited disease mechanisms with iPSC technology.

4.
J Biomed Mater Res A ; 110(1): 131-142, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34289220

RESUMO

Radiopaque and degradable hydrogel microspheres have a range of potential uses in medicine including proper placement of embolic material during occlusion procedures, acting as inherently embolic materials, and serving as drug carriers that can be located after injection. Current methods for creating radiopaque microspheres are either unable to fully and homogeneously incorporate radiopaque material throughout the microspheres for optimal imaging capabilities, do not result in degradable or fully compressible microspheres, or require elaborate, time-consuming preparation. We used a simple one-step microfluidic method to fabricate imageable, degradable polyethylene glycol (PEG) microspheres of varying sizes with homogenous dispersion of barium sulfate-a biocompatible, high-radiopacity contrast agent. The imageability of the microspheres was characterized using optical microscopy and microcomputed tomography as a function of barium sulfate loading. Microspheres with 20% wt/vol barium sulfate had a mean CT attenuation value of 1,510 HU, similar to that of cortical bone, which should enable visualization with soft tissue. Compared with unloaded microspheres, barium sulfate-loaded ones saw an increase in gelation and degradation times and storage modulus and decrease in swelling. Imageable microspheres retained compressibility and were injectable via catheter. The developed radiopaque, degradable PEG microspheres have various potential uses for interventional radiologists and imaging laboratories.


Assuntos
Embolização Terapêutica , Polietilenoglicóis , Catéteres , Microfluídica , Microesferas , Microtomografia por Raio-X
5.
J Funct Biomater ; 9(3)2018 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-30042357

RESUMO

The current gold standard treatment for oral clefts is autologous bone grafting. This treatment, however, presents another wound site for the patient, greater discomfort, and pediatric patients have less bone mass for bone grafting. A potential alternative treatment is the use of tissue engineered scaffolds. Hydrogels are well characterized nanoporous scaffolds and cryogels are mechanically durable, macroporous, sponge-like scaffolds. However, there has been limited research on these scaffolds for cleft craniofacial defects. 3D-printed molds can be combined with cryogel/hydrogel fabrication to create patient-specific tissue engineered scaffolds. By combining 3D-printing technology and scaffold fabrication, we were able to create scaffolds with the geometry of three cleft craniofacial defects. The scaffolds were then characterized to assess the effect of the mold on their physical properties. While the scaffolds were able to completely fill the mold, creating the desired geometry, the overall volumes were smaller than expected. The cryogels possessed porosities ranging from 79.7% to 87.2% and high interconnectivity. Additionally, the cryogels swelled from 400% to almost 1500% of their original dry weight while the hydrogel swelling did not reach 500%, demonstrating the ability to fill a defect site. Overall, despite the complex geometry, the cryogel scaffolds displayed ideal properties for bone reconstruction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA