RESUMO
Shortly after the establishment of African swine fever virus (ASFV) genotype II in 2007, cases of acute fatal infection were observed. However, after several years of circulation in the Eurasian region, the clinical signs of the disease changed. Currently, this disease can occur acutely, subclinically, chronically, or asymptomatically. Cases of the complete recovery of infected pigs, and the disappearance of ASFV from their tissues and secretions have been described. This form of the disease first appeared in Armenia at the end of 2011. This virus was described and identified as the Dilijan2011IMB strain. The goal of our research was to study the main features of clinical, pathological, immunological, virological, and genetic parameters involved in the development of new forms of African swine fever (ASF). Chronic ASF was characterized with low titers of the virus and a decrease in the intensity of hemadsorption. Additionally, a reduced intensity in clinical symptoms and pathoanatomical results was noted. The absolute, but not the relative number of immune cells changes; the neutropenia (in bone marrow and spleen), lymphopenia (in bone marrow), lymphocytosis (only in spleen), lymphoid cell depletion (in bone marrow), and pancytopenia (in bone marrow) observed in the chronic form of ASF were less pronounced compared to in the acute form. When comparing the late stage of chronic ASF to the acute form, the key cytological indicators in the spleen, lymph nodes, and blood were less severe in the chronic stage. Bone marrow failure in the chronic form, expressed in a pronounced decrease in all cell types, generally coincided with the data in the acute form of ASF. The same data were obtained after assessing serum TNF-alpha levels. Thus, we can conclude that the chronic form of ASF occurs due to a less pronounced immune response, as well as a decrease in virus titers in the blood and tissues of infected pigs.
RESUMO
Background and Aim: Recently, viral diseases of honey bees (Apis mellifera) have presented an increasing threat to beekeeping. This study aimed to examine the presence of honey bee viruses in Apis and non-Apis bee species, the mite Varroa destructor, and pollinated plants in Armenia. Materials and Methods: Sampling was performed in Tavush Province, in the northeast of the Republic of Armenia, from August to November 2019. Overall, 200 A. mellifera bees, 50 V. destructor mites, and 20 wasps were collected (corresponding to three bees, five mites, and 2-11 wasps in each investigated sample) and homogenized for RNA isolation and detection of viruses. Ten pollinated plants were taken from each plant, and 2 g of each sample was used for homogenization. In each investigated case Apis mellifera, Varroa destructor, Vespula germanica and plants received percentages of the virus presence. Results: Six important honey bee viruses (acute bee paralysis virus [ABPV], deformed wing virus [DWV], A. mellifera norovirus [ANV], Lake Sinai virus-2 [LSV-2], Big Sioux River virus [BSRV], and A. mellifera filamentous virus [AmFV]) were detected in samples by polymerase chain reaction. Our results showed that DWV, ANV, and ABPV were the most common viruses in honey bees. All viruses were detected in wasps, but LSV-2 and ANV were present in almost all samples. Conclusion: Our results showed that almost all viruses were present in V. destructor. Although ANV is very common in honey bees, it did not appear in any mite samples. Our study indicates that viruses typically associated with honey bees were also actively infecting wasps. Our data suggest that the survival of viruses in plants can be an important source of seasonal transmission of viruses to bees. In addition, pollinated plants can potentially serve as reservoirs for honey bee viruses.
RESUMO
African swine fever virus manipulates the cell cycle of infected G0 cells by inducing its progression via unblocking cells from the G0 to S phase and then arresting them in the G2 phase. DNA synthesis in infected alveolar macrophages starts at 10-12 h post infection. DNA synthesis in the nuclei of G0 cells is preceded by the activation of the viral genes K196R, A240L, E165R, F334L, F778R, and R298L involved in the synthesis of nucleotides and the regulation of the cell cycle. The activation of these genes in actively replicating cells begins later and is less pronounced. The subsequent cell cycle arrest at the G2 phase is also due to the cessation of the synthesis of cellular factors that control the progression of the cell cycle-cyclins. This data describes the manipulation of the cell cycle by the virus to gain access to the nucleotides synthesized by the cell. The genes affecting the cell cycle simply remain disabled until the beginning of cellular DNA synthesis (8-9 hpi). The genes responsible for the synthesis of nucleotides are turned on later in the presence of nucleotides and their transcriptional activity is lower than that during virus replication in an environment without nucleotides.
Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Vírus da Febre Suína Africana/genética , Animais , Ciclo Celular , Chlorocebus aethiops , DNA , Nucleotídeos , Suínos , Células Vero , Replicação Viral/genéticaRESUMO
The water-based combination of two inorganic chemical compounds such as sodium tungstate dihydrate-Na2WO4 × 2H2O and Aluminum sulfate octadecahydrate-Al2 (SO4) 3 × 18H2O that we have conditionally named 'Vomifal' has a broad antiviral activity in various DNA and RNA viruses, including Human Herpes Virus (HHV), African Swine Fever Virus (ASFV), Vaccinia Virus (VV), Hepatitis C Virus (HCV), Foot and Mouth Disease Virus (FMDV), Influenza A virus (A/Aichi/2/68 (H3N2)). In vitro and In vivo assays in several tissue cultures as well as in laboratory animals, conformed 'Vomifal' has a very low toxicity and the antiviral properties partially are due to its ability to induce gamma-IFN. Based on the results obtained, we can assume the presence of at least two mechanisms of the antiviral action of the studied drug. First or early stage - an unknown mechanism, possibly related to the effect on cellular receptors. Second or late stage - main antiviral properties probably associated with an interferonogenic effect.
Assuntos
Vírus da Febre Suína Africana , Vírus da Febre Aftosa , Animais , Antivirais/farmacologia , Vírus da Febre Aftosa/genética , Vírus da Influenza A Subtipo H3N2 , Suínos , Tungstênio/farmacologiaRESUMO
BACKGROUND AND AIM: In modern scientific literature presents an understanding that African swine fever (ASF) ASF virus (ASFV) is remarkably stable in the environment, and carcasses of the pigs which were died after ASF, play a key role as ASFV reservoir. The aim of this study was to evaluate the possibility of the ASFV (different isolates) survival in bodies of dead animals, bones, remnants of bone marrow, residual organ matrix in natural conditions. MATERIALS AND METHODS: Skeletons of ASFV infected pigs which were died and left/abandoned in forests or buried in Armenia at diverse time points and locations had been excavated and examined for the presence of ASFV genome by real-time polymerase chain reaction (PCR) assay and for infection abilities through in vitro (hemadsorption test and infection in porcine lung macrophages) as well as by intramuscular infection in healthy pigs. RESULTS: Current exploration showed that in several samples (with different times of exposure) of excavated skeletons had been detected the presence of the virus gene (p72) using real-time PCR. However, in none of these porcine samples, infectious ASFV could be isolated. Data obtained by real-time PCR at frequent intervals indicated the presence of the virus gene (p72), especially within the case of the acute form of the disease. This can be explained by the highest levels of the virus during the latter case mentioned above. CONCLUSION: ASFV seems to be very sensitive to environmental temperature. The best place for ASFV long-term survival in the natural environment is bone marrow from intact big tubular bones (like femur or tibia) of buried carcasses. In artificial "graves," complete bones with not destructed bone marrow can preserve the virus gene (p72) for a very long time (more than 2 years). Infectious particles in underground conditions survive not so long: In complete bones with not affected bone marrow, possible presence of the virus for several months.
RESUMO
The pattern of porcine alveolar macrophage (AM) activation upon classical stimuli of two strains of African swine fever (ASF) viruses, an attenuated ASFV-BA71V and virulent ASFV-Georgia2007 were investigated. In an in vitro experiment ASFV-Georgia2007-infected AM showed M1 polarization pattern different from the one induced by classical stimuli. Altered morphology, appearance of binuclear cells, decreased synthesis of IFN-alpha as well as IFN-epsilon was observed compared with attenuated ASFV-BA71V, and decreased synthesis of IFN-omega compared with intact cells. However, CD68 level did not significantly differ between alveolar macrophage populations infected by ASFV-Georgia2007 and control group, while both LPS/IFN-gamma stimulation and non-pathogenic ASFV-BA71V virus increased the level of CD68 soluble receptor. AM infection with ASFV-Georgia2007 resulted in remarkable DNA proliferation whereas LPS/IFN-gamma and ASFV-BA71V induced less expressed DNA proliferation in activated cells. The higher value of nitric oxide was obvious in the cells infected with ASFV-BA71V, compared to ASFV-Georgia2007 and LPS/IFN-gamma activated cells. In conclusion, pattern of activation of alveolar macrophages induced by ASFV-Georgia2007 virus differs from the one expressed in LPS/IFN-gamma- and ASFV-BA71V-activated cells. ASFV-BA71V and LPS/IFN-gamma share similar antiviral response of porcine AM. Therefore we assume that wild type virulent ASFV can partially down regulate antiviral response of AM and conclude that evolutionary decrease of virulence in ASFV is related to alterations of control of the host cell antiviral response.
Assuntos
Febre Suína Africana/imunologia , Ativação de Macrófagos , Macrófagos Alveolares/imunologia , Vírus da Febre Suína Africana/patogenicidade , Animais , Suínos , VirulênciaRESUMO
AIM: The aim of this research was to study the effect of rabbit hemorrhagic disease virus (RHDV) on the host immune response by examining the cellular composition/pathology of lymphoid organs and serum levels of tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ). MATERIALS AND METHODS: Nine adult rabbits were inoculated with 1 ml of 10% infected liver homogenate, and three rabbits served as controls. The rabbit hemorrhagic disease (RHD)-induced animals were studied on 3 consecutive days post-infection. Diagnosis of RHD was made through routine hemagglutination tests and the polymerase chain reaction. Blood smears and tissue samples from bone marrow (BM), spleen, lymph nodes, and liver were analyzed for cell composition and cytopathology. Serum levels of TNF-α and IFN-γ were measured by enzyme-linked immunosorbent assay. RESULTS: RHD showed a decreased absolute cell count of blood as well as lymph nodes, spleen, and BM cell populations with marked left shift. This was seen as a progressive rise in immature and blast cells. Quantitative cellular changes were accompanied by an increase in specific inflammatory cytokines. Immunocytopathological alterations were evidenced by: Vacuolized, hyperactivated tissue macrophages, finding of Döhle bodies in neutrophils, and activated lymphocytes with increased nuclear-cytoplasmic ratio. Cytoplasmic eosinophilic viral inclusions found in tissue (liver, spleen, and BM) macrophages were shown for the 1st time in RHD. Megakaryocytic emperipolesis was a common feature of RHD. CONCLUSION: These studies suggest that RHDV induces pathology in leukocytes due to hyperactivation with left shift (toward immature stages of the different cell lineages). Macrophages are increased in number and show an expressed cytopathic effect often accompanied by viral eosinophilic cytoplasmic inclusions. They also developed a secretory activation (increased levels of pro-inflammatory cytokines).
RESUMO
The present study describes the gross, histopathologic lesions of the heart arising in pigs infected with acute African Swine Fever (ASF) and their biochemical profile. Ten pigs were infected by intramuscular injection of ASF virus (Georgia 2007). Selected heart samples were submitted for histopathological examination and Hematoxylin-Basic Fuchsin-Picric Acid (HBFP) staining. Enzymatic abnormalities were evaluated by measurement of main cardiac markers, whose activity increased during the early stage of infection, with histopathological changes occurring later. Minor myocardial haemorrhages were first observed at four days post infection (dpi), and were noted in all pigs by six dpi. Early vascular response to infection was manifested as increased capillary permeability leading to diapedesis and the retention of blood cells in myocardial tissue. The terminal stage of the disease was characterised by massive haemorrhages caused by the rupture of large vessels. Substantial ischemic areas were detected by HBFP staining at the terminal stages of ASF.
Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Miocárdio , Doenças dos Suínos , Febre Suína Africana/complicações , Animais , Hemorragia/etiologia , Hemorragia/veterinária , Miocárdio/patologia , Suínos , Doenças dos Suínos/patologiaRESUMO
The brains of 10 infected pigs were examined for histopathology and presence of African swine fever virus (ASFV) DNA ASFV infection induces inflamed meninges, cerebral edema and vascular thrombosis, as well as subdural hematomas. Slight tension in the dura mater, flattening of the gyri and narrowing of the sulci were also observed at four days post infection (dpi). Enlarged perivascular spaces were detected for most vessels of the brain after three to four dpi. Considerable lymphocytic infiltration of the brain tissue was observed at the terminal stage of disease. ASFV was present in all investigated areas of brain beginning from three to four dpi. The isolated virus do not differ from the used in present study Georgia 2007 strain.
Assuntos
Febre Suína Africana/patologia , Encéfalo/patologia , Vírus da Febre Suína Africana/patogenicidade , Animais , Encéfalo/virologia , Suínos , VirulênciaRESUMO
BACKGROUND: African swine fever virus (ASFV) is the causative agent of African swine fever (ASF) that is the significant disease of domestic pigs. Several studies showed that ASFV can influence on porcine blood cells in vitro. Thus, we asked ourselves whether ASFV infection results in changes in porcine blood cells in vivo. A series of experiments were performed in order to investigate the effects of ASFV infection on porcine peripheral white blood cells. Nine pigs were inoculated by intramuscular injection with 104 50% hemadsorbing doses of virus (genotype II) distributed in Armenia and Georgia. The total number of fifteen cell types was calculated during experimental infection. RESULTS: Although band-to-segmented neutrophils ratio became much higher (3.5) in infected pigs than in control group (0.3), marked neutropenia and lymphopenia were detected from 2 to 3 days post-infection. In addition to band neutrophils, the high number of other immature white blood cells, such as metamyelocytes, was observed during the course of infection. From the beginning of infection, atypical lymphocytes, with altered nuclear shape, arose and became 15% of total cells in the final phase of infection. Image scanning cytometry revealed hyperdiploid DNA content in atypical lymphocytes only from 5 days post-infection, indicating that DNA synthesis in pathological lymphocytes occurred in the later stages of infection. CONCLUSION: From this study, it can be concluded that ASFV infection leads to serious changes in composition of white blood cells. Particularly, acute ASFV infection in vivo is accompanied with the emergence of immature cells and atypical lymphocytes in the host blood. The mechanisms underlying atypical cell formation remain to be elucidated.