Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Eur J Appl Physiol ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023768

RESUMO

PURPOSE: To estimate the highest power output at which predominant energy contribution is derived from the aerobic system (aerobic limit power: ALP) and to compare ALP with the upper boundary of the severe intensity exercise domain. METHODS: Fifteen male individuals participated in this study. The upper boundary was estimated using i) linear relationship between time to achieve V ˙ O2max and time to task failure (PUPPERBOUND), ii) hyperbolic relationships between time to achieve V ˙ O2max vs. power output, and time to task failure vs. power output (PUPPERBOUND´), and iii) precalculated V ˙ O2max demand (IHIGH). ALP was estimated by aerobic, lactic, and phospholytic energy contributions using V ˙ O2 response, blood [lactate] response, and fast component of recovery V ˙ O2 kinetics, respectively. RESULTS: ALP was determined as the highest power output providing predominant aerobic contribution; however, anaerobic pathways became the predominant energy source when ALP was exceeded by 5% (ALP + 5%) (from 46 to 52%; p = 0.003; ES:0.69). The V ˙ O2 during exercise at ALP was not statistically different from V ˙ O2max (p > 0.05), but V ˙ O2max could not be attained at ALP + 5% (p < 0.01; ES:0.63). ALP was similar to PUPPERBOUND and PUPPERBOUND´ (383 vs. 379 and 384 W; p > 0.05). There was a close agreement between ALP and PUPPERBOUND (r: 0.99; Bias: - 3 W; SEE: 6 W; TE: 8 W; LoA: - 17 to 10 W) and PUPPERBOUND´ (r: 0.98; Bias: 1 W; SEE: 8 W; TE: 8 W; LoA: - 15 to 17 W). ALP, PUPPERBOUND, and PUPPERBOUND´ were greater than IHIGH (339 ± 53 W; p < 0.001). CONCLUSION: ALP may provide a new perspective to intensity domain framework.

2.
Res Q Exerc Sport ; 94(4): 1094-1100, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36149826

RESUMO

Purpose: The highest work-rate that provides maximal oxygen uptake (V˙O2max) may be one of the best exercise stimuli to yield both V˙O2max and lactate accumulation. The aim of this study was to analyze physiological and metabolic acute responses of an exercise modality performed at the upper boundary of the severe exercise domain, and compare those responses with exercise modalities applied within the severe exercise domain. Method: Ten trained male cyclists participated in this study. The V˙O2max, corresponding power output (POVO2max), and the highest work-rate that provides the V˙O2max (IHIGH) were determined by constant work-rate exercises. Cyclists performed three high-intensity interval training (HIIT) strategies as follows; HIIT-1: 4-6 × 3-min at 95% of POVO2max with 1:1 (workout/rest ratio); HIIT-2: 16-18 × 1-min at 105% of POVO2max with 1:1; HIIT-3: 4-7 × 1-2-min at the IHIGH with 1:2. Capillary blood samples were analyzed before, immediately after HIIT sessions, and at the first, third, and fifth minutes of recovery periods. Lactate difference between the highest lactate response and resting status was considered as the peak lactate response for each HIIT modality. Results: Time spent at V˙O2max was greater at HIIT-1 and HIIT-3 (272 ± 127 and 208 ± 111 seconds, respectively; p = 0.155; effect size = 0.43) when compared to the HIIT-2 (~26 seconds; p < 0.001), while there was a greater lactate accumulation at HIIT-3 (~16 mmol·L-1) when compared to HIIT-1 and HIIT-2 (12 and 14 mmol·L-1, respectively; p < 0.001). Conclusions: In conclusion, HIIT-3 performed at IHIGH was successful to provide time spent at V˙O2max with a greater lactate accumulation in a single session.


Assuntos
Exercício Físico , Consumo de Oxigênio , Humanos , Masculino , Consumo de Oxigênio/fisiologia , Exercício Físico/fisiologia , Terapia por Exercício , Teste de Esforço , Ácido Láctico
3.
J Sports Sci ; 41(23): 2144-2152, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38380593

RESUMO

The aim of this study was to classify potential sub-zones within the extreme exercise domain. Eight well-trained male cyclists participated in this study. The upper boundary of the severe exercise domain (Pupper-bound) was estimated by constant-work-rate tests. Then three further extreme-work-rate tests were performed in discrete regions within the extreme domain: extreme-1) at a work-rate greater than the Pupper-bound providing an 80-110-s time to task failure; extreme-2) a 30-s maximal sprint; and extreme-3) a 4-s maximal sprint. Different functions were used to describe the behaviour of the V˙O2 kinetics over time. V˙O2 on-kinetics during extreme-1 exercise was best described by a single-exponential model (R2 ≥ 0.97; SEE ≤ 0.10; p < 0.001), and recovery V˙O2 decreased immediately after the termination of exercise. In contrast, V˙O2 on-kinetics during extreme-2 exercise was best fitted by a linear function (R2 ≥ 0.96; SEE ≤ 0.16; p < 0.001), and V˙O2 responses continued to increase during the first 10-20 s of recovery. During the extreme-3 exercise, V˙O2 could not be modelled due to inadequate data, and there was an M-shape recovery V˙O2 response with an exponential decay at the end. The V˙O2 response to exercise across the extreme exercise domain has distinct features and must therefore be characterised with different fitting strategies in order to describe the responses accurately.


Assuntos
Teste de Esforço , Consumo de Oxigênio , Humanos , Masculino , Consumo de Oxigênio/fisiologia , Exercício Físico/fisiologia , Cinética
4.
Respir Physiol Neurobiol ; 302: 103910, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35405332

RESUMO

The aim of this study was to reveal the development potentials of five high-intensity training models on central and peripheral components of maximal oxygen consumption (VO2max). Following VO2max determination, maximal cardiac output (Qmax), maximal stroke volume (SVmax), and maximal arteriovenous O2 difference (a-vO2diff_max) were analysed. Short-interval- (short-HIIT), long-interval (long-HIIT), alternating work-rate continuous (alter-HIT), constant work-rate continuous (const-HIT), and sprint interval (SIT) sessions were performed on separate days with iso-effort and iso-time methods. Time spent (tspent) at > 95% of VO2max was the highest in long-HIIT (p < 0.05). The tspent at > 90% of Qmax was higher in alter-HIT than long-HIIT and SIT (p < 0.05), while there was no significant difference for tspent at > 90% of SVmax amongst high-intensity trainings. The tspent at > 90% of a-vO2diff_max was higher in short-HIIT and long-HIIT than other modalities (p < 0.05). It can be said that continuous modalities seem to have a higher potential to improve central part of VO2max, while interval modalities may be better to develop peripheral component.


Assuntos
Treinamento Intervalado de Alta Intensidade , Débito Cardíaco , Treinamento Intervalado de Alta Intensidade/métodos , Consumo de Oxigênio , Testes de Função Respiratória , Volume Sistólico
5.
J Strength Cond Res ; 36(1): 113-120, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32149880

RESUMO

ABSTRACT: Ozkaya, O, Balci, GA, As, H, Cabuk, R, and Norouzi, M. Grey zone: A gap between heavy and severe exercise domain. J Strength Cond Res 36(1): 113-120, 2022-The aim of this study was to determine a critical threshold (CT) interpreted as "the highest exercise intensity where V̇o2 can be stabilized before reaching 95% of V̇o2max (V̇o2peak)" and compare it with commonly used anaerobic threshold indices. Ten well-trained male cyclists volunteered for this study. Ventilatory threshold (VT) was determined from incremental tests. Multisession constant-load trials were performed to reveal V̇o2max. Mathematically modeled critical power (CP) was estimated through the best individual fit parameter method. Maximal lactate steady state (MLSS) was detected by 30-minute constant-load exercises. The individual CT load of each cyclist was tested by constant-load exercises to exhaustion with +15 W intervals until minimal power output to elicit V̇o2peak. The results showed that work rate corresponding to CT (329.5 ± 41.5 W) was significantly greater than that of the MLSS (269.5 ± 38.5 W; p = 0.000), VT (279.6 ± 33 W; p = 0.000), and CP (306.3 ± 39.4 W; p = 0.000), and CP overestimated both VT and MLSS (p = 0.000). There was no significant V̇o2 difference between the 10th and 30th minute of MLSS and MLSS + 15 W exercise (0.36-0.13 ml·min-1·kg-1; p = 0.621). Exercising V̇o2 response of MLSS + 15 W could not exceed the level of 95% V̇o2max (57.02 ± 3.87 ml·min-1·kg-1 and 87.2 ± 3.1% of V̇o2max; p = 0.000), whereas V̇o2 responses greater than 95% of V̇o2max were always attained during exercises performed at CT + 15 W (64.52 ± 4.37 ml·min-1·kg-1 and 98.6 ± 1% of V̇o2max; p > 0.05). In conclusion, this study indicates that there is a "grey zone" between heavy and severe exercise domain. This information may play a key role in enhancing athletic performance by improving the quality of training programs.


Assuntos
Teste de Esforço , Consumo de Oxigênio , Limiar Anaeróbio , Exercício Físico , Humanos , Ácido Láctico , Masculino
6.
Respir Physiol Neurobiol ; 294: 103735, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34229064

RESUMO

The aim of this study was to test the utility and effectiveness of an alternative computational approach to threshold-intensities based on time dependent change-points in minute ventilation divided by end-tidal partial pressure of CO2 (VE/PETCO2) to reveal whether respiratory compensation point (RCP) is a third ventilatory threshold, or not. Ten recreationally active young adults and ten well-trained athletes volunteered to take part in this study. Following incremental ramp tests, gas exchange threshold (GET) and respiratory compensation point (RCP) were respectively evaluated by the slopes of VCO2-VO2 and VE-VCO2 using the Innocor system automatically. Respiratory threshold (RT) was analysed based on time dependent change-points in the VE/PETCO2 using binary segmentation algorithm. Additionally, those intersections were analysed independently by two experienced investigators using a visual identification technique in a double-blind design. According to the results, in the recreationally active group, there were the first (GET1) and the second (GET2) gas exchange thresholds which were identical with the RT1 (139 W; 1.9 L⋅min-1 of VO2; 1.73 L⋅min-1 of VCO2; 49.9 L⋅min-1 of VE versus 139 W; 1.88 L⋅min-1; 1.7 L⋅min-1; 49 L⋅min-1, respectively) and RT2 (186 W; 2.39 L⋅min-1 of VO2; 2.44 L⋅min-1 of VCO2; 66 L⋅min-1 of VE versus 187 W; 2.41 L⋅min-1; 2.49 L⋅min-1; 65.7 L⋅min-1, respectively). However, there were three threshold intensities which were determined by GET1, GET2, and RCP in well-trained athletes. Additionally, RT1, RT2, and RT3 were determined as valid surrogates of the GET1 (194 W; 2.56 L⋅min-1 of VO2; 1.99 L⋅min-1 of VCO2; 57.5 L⋅min-1 of VE versus 192 W; 2.61 L⋅min-1; 1.99 Lmin-1; 57.7 L⋅min-1, respectively), GET2 (267 W; 3.6 L⋅min-1 of VO2; 3.29 L⋅min-1 of VCO2; 94.5 L⋅min-1 of VE versus 266 W; 3.58 L⋅min-1; 3.26 L⋅min-1; 93.4 L⋅min-1, respectively), and RCP (324 W; 4.05 L⋅min-1 of VO2; 4.13 L⋅min-1 of VCO2; 124 L⋅min-1 of VE versus 322 W; 4.02 L⋅min-1; 4.07 L⋅min-1; 122 L⋅min-1, respectively) in well-trained athletes. There were high levels of agreements between the power outputs determined by traditional techniques and newly proposed change-points in RT. All markers were strongly correlated (p < 0.001). It was shown that RT technique can provide an accurate threshold determination. Furthermore, the RCP was observed as a third threshold-intensity for well-trained athletes but not for recreationally active young adults.


Assuntos
Dióxido de Carbono/metabolismo , Troca Gasosa Pulmonar/fisiologia , Ventilação Pulmonar/fisiologia , Adulto , Atletas , Humanos , Masculino , Adulto Jovem
7.
Respir Physiol Neurobiol ; 281: 103507, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32726644

RESUMO

The aim of the study was to analyse the VO2 on-kinetics belonging to the work rates within the lower district of extreme exercise domain. Maximal O2 utilisation and peak power outputs of eight well-trained cyclists were revealed by multisession trails. Critical threshold (CT) as the lower boundary of severe domain and aerobic limit power (ALP) as the upper boundary of severe domain were determined by multisession constant-load exercises. VO2 on-kinetics over time were best fitted by multicomponent exponential models described by an initial concave-up response known as cardio-dynamic phase (τ = 18.2 ± 2.88 s; a = 1.56 ± 0.39 L·min-1) before a primary concave-up phase (τ = 35.4 ± 12.4 s; a = 1.53 ± 0.36 L·min-1), and then a slow component in two of the participants (τ = 80.8 ± 37 s; a = 0.47 ± 0.05 L·min-1) or without a slow component in six of the participants during exercises performed at 50 W above the CT (R2≥0.96; SEE ≤ 0.24; p < 0.001). However, VO2 on-kinetics over time belonging to exercises performed at 50 W above the ALP were best fitted by sigmoidal model (R2≥0.98; SEE ≤ 0.14; p < 0.001) in comparison with linear (R2 = 0.37-0.66; SEE = 0.46-0.64; p < 0.01), or exponential functions (p> 0.05). Indeed, during those exercises, a short period of convex-up response (τ = 16.8 ± 3.1 s; a = 1.72 ± 0.39 L·min-1) was determined just before a concave-up primary phase in VO2 over time (τ = 24.6 ± 5.86 s; a = 1.31 ± 0.20 L·min-1). It was shown that multicomponent exponential trend in VO2 transformed into a sigmoidal shape, once the work rate exceeded the upper boundary of severe exercise domain.


Assuntos
Desempenho Atlético/fisiologia , Ciclismo/fisiologia , Fenômenos Biomecânicos/fisiologia , Exercício Físico/fisiologia , Consumo de Oxigênio/fisiologia , Adulto , Estudos Transversais , Humanos , Masculino
8.
Sports (Basel) ; 6(2)2018 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-29910335

RESUMO

Although reliability correlations of traditional power indices of the Wingate test have been well documented, no study has analyzed new generation power indices based on milliseconds obtained from a Peak Bike. The purpose of this study was to investigate the retest reliability of new generation power indices. Thirty-two well-trained male athletes who were specialized in basketball, football, tennis, or track and field volunteered to take part in the study (age: 24.3 ± 2.2 years; body mass: 77 ± 8.3 kg; height: 180.3 ± 6.3 cm). Participants performed two Wingate all-out sessions on two separate days. Intra-class correlation coefficient (ICC), standard error measurement (SEM), smallest real differences (SRD) and coefficient of variation (CV) scores were analyzed based on the test and retest data. Reliability results of traditional power indices calculated based on 5-s means such as peak power, average power, power drop, and fatigue index ratio were similar with the previous findings in literature (ICC ≥ 0.94; CV ≤ 2.8%; SEM ≤ 12.28; SRD% ≤ 7.7%). New generation power indices such as peak power, average power, lowest power, power drop, fatigue index, power decline, maximum speed as rpm, and amount of total energy expenditure demonstrated high reliability (ICC ≥ 0.94; CV ≤ 4.3%; SEM ≤ 10.36; SRD% ≤ 8.8%). Time to peak power, time at maximum speed, and power at maximum speed showed a moderate level of reliability (ICC ≥ 0.73; CV ≤ 8.9%; SEM ≤ 63.01; SRD% ≤ 22.4%). The results of this study indicate that reliability correlations and SRD% of new generation power and fatigue-related indices are similar with traditional 5-s means. However, new time-related indices are very sensitive and moderately reliable.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA