Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
J Bone Miner Res ; 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38795012

RESUMO

Tendons play an important role in the maintenance of motor function by connecting muscles and bones and transmitting forces. Particularly, the role of mechanical stress has primarily focused on the key mechanism of tendon homeostasis, with much research on this topic. With the recent development of molecular biological techniques, the mechanisms of mechanical stress sensing and signal transduction have been gradually elucidated with identification of mechanosensor in tendon cells and the master regulator in tendon development. This review provides a comprehensive overview of the structure and function of tendon tissue, including the role for physical performance and the detailed mechanism of mechanotransduction in its regulation. An important lesson is that the role of mechanotransduction in tendon tissue is only partially clarified, indicating the complexity of the mechanisms of motor function and fueling increasing interest in uncovering these mechanisms.


This review summarizes current knowledge of the mechanobiology of tendons. Appropriate mechanical stress can enhance the anabolic effects of tenocytes via the activation of PIEZO1-MKX/SCX cascade, which can alter the mechanical properties of tendon tissue and may also affect physical performance. However, the elucidation of the mechanisms by which structural changes in tendons affect physical performance appears to be still partial. Further clarification of tendon function is anticipated to lead to applications in enhancing physical performance and the extension of healthy life expectancy.

2.
Colloids Surf B Biointerfaces ; 234: 113735, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38218136

RESUMO

Microplastic (MP) pollution is a global environmental problem. To understand the biological effects of MPs on humans, it is essential to evaluate the response of human cells to model plastic particles that mimic environmental MPs in a sensitive and non-invasive manner. In this study, we investigated the preparation of poly(ethylene terephthalate) (PET) fragments with properties similar to those of environmental MPs by combining photo-oxidative degradation via ultraviolet (UV) irradiation with mechanical pulverization and hydrolysis via ultrasound (US) exposure. Combination of UV and US treatments decreased the particle size of PET fragments to 10.2 µm and increased their crystallinity and Young's modulus to 35.7 % and 0.73 GPa, respectively, while untreated PET fragments showed the particle size of 18.9 µm, the crystallinity of 33.7 %, and Young's modulus of 0.48 GPa. In addition, an increase in negative surface potential and O/C ratio were observed for UV/US-treated PET fragments, suggesting surface oxidation via UV/US treatment. Cytokine secretion from human macrophages was evaluated by a highly sensitive inflammation evaluation system using the HiBiT-based chemiluminescence detection method developed by genome editing technology. UV/US-treated PET fragments induced a 1.4 times higher level of inflammatory cytokine secretion on inflammatory macrophages than untreated ones, suggesting that the biological responses of PET fragments could be influenced by changes in material properties via oxidation. In conclusion, UV/US treatment enables efficient preparation of model plastic particles and is expected to provide new insights into the evaluation of biological effects using human cells. (240 words).


Assuntos
Microplásticos , Ácidos Ftálicos , Poluentes Químicos da Água , Humanos , Plásticos , Polietilenotereftalatos , Macrófagos/química , Linhagem Celular , Etilenos , Citocinas , Poluentes Químicos da Água/análise
3.
Regen Ther ; 25: 186-193, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38230307

RESUMO

Introduction: The periodontium is a connective tissue which consists of periodontal ligament, alveolar bone, cementum and gingiva. Periodontal ligament (PDL) is a specialized connective tissue that connects the cementum - coating the surface of the tooth - to the alveolar bone. Mohawk homeobox (Mkx) is a transcription factor that is expressed in PDL, that is known to play a vital role in the development and homeostasis of PDL. A detailed functional analysis of Mkx in the periodontal ligament for alveolar bone and cementum metabolism has not yet been conducted. Materials and methods: Alveolar bone height, bone mineral density (BMD) and bone volume fractions (Bone volume/Total volume: BV/TV) were measured and analyzed using micro-computed tomography (Micro-CT) and 3DBon on 7-week-old male wild-type (WT) (Mkx+/+) (n = 10) and Mkx-knockout (Mkx-/-) (n = 6) rats. Hematoxylin and Eosin (H&E), tartrate-resistant acid phosphatase (TRAP), alkaline phosphatase (ALP) and Masson Trichrome staining were performed on 5, 6, and 7-week-old Mkx+/+ and Mkx-/- rats. Cementum surface area and the number of TRAP-positive osteoclasts/mm were quantified, measured, and compared for 5,6 and 7-week-old Mkx+/+ and Mkx-/- rats (n = 3 each). Results: The level of alveolar bone height was significantly higher in Mkx-/- rats than in Mkx+/+ rats. On the other hand, there was significantly less BMD in Mkx-/- alveolar bone. A significant increase in cellular cementum could be observed as early as 5 weeks in Mkx-/- rats when compared with Mkx+/+ rats of the same age. More TRAP-positive osteoclasts were observed in Mkx-/- rats. Conclusion: Our findings further reveal the essential roles of Mkx in the homeostasis of the periodontal tissue. Mkx was found to contribute to bone and cementum metabolism and may be essential to the prevention of diseases such as periodontitis, and could show potential in regenerative treatments.

4.
J Clin Invest ; 133(22)2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37966117

RESUMO

The heterogeneity of cancer stem cells (CSCs) within tumors presents a challenge in therapeutic targeting. To decipher the cellular plasticity that fuels phenotypic heterogeneity, we undertook single-cell transcriptomics analysis in triple-negative breast cancer (TNBC) to identify subpopulations in CSCs. We found a subpopulation of CSCs with ancestral features that is marked by FXYD domain-containing ion transport regulator 3 (FXYD3), a component of the Na+/K+ pump. Accordingly, FXYD3+ CSCs evolve and proliferate, while displaying traits of alveolar progenitors that are normally induced during pregnancy. Clinically, FXYD3+ CSCs were persistent during neoadjuvant chemotherapy, hence linking them to drug-tolerant persisters (DTPs) and identifying them as crucial therapeutic targets. Importantly, FXYD3+ CSCs were sensitive to senolytic Na+/K+ pump inhibitors, such as cardiac glycosides. Together, our data indicate that FXYD3+ CSCs with ancestral features are drivers of plasticity and chemoresistance in TNBC. Targeting the Na+/K+ pump could be an effective strategy to eliminate CSCs with ancestral and DTP features that could improve TNBC prognosis.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Células-Tronco Neoplásicas/patologia , Linhagem Celular Tumoral , Proteínas de Membrana , Proteínas de Neoplasias/genética
5.
Am J Physiol Cell Physiol ; 325(2): C509-C518, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37486067

RESUMO

Sepsis is a life-threatening inflammatory response to infection, often accompanied by skeletal muscle atrophy. A previous study demonstrated that the administration of microRNA-140 (miR-140) attenuated lipopolysaccharide (LPS)-induced muscle atrophy, whereas miR-140 knockdown with siRNA promoted atrophy. Therefore, we investigated whether miR-140 is involved in LPS-induced muscle atrophy using a genetic model, miR-140-/- mice. We found that a single injection of LPS induced atrophy both in slow-twitch and fast-twitch muscles. The muscle weights and fiber cross-sectional areas were significantly reduced in both the wild-type (WT) and miR-140-/- mice, with no difference between genotypes. The expression of several proteolysis markers, muscle-specific RING-finger 1 (MuRF1) and MAFbx/atrogin-1, increased in both groups after LPS injection. The ubiquitinated proteins in the miR-140-/- mice were similar to those in the WT mice. Therefore, the deletion of miR-140 did not affect LPS-induced muscle atrophy.NEW & NOTEWORTHY We used miR-140-/- mice to determine the function of miR-140 in LPS-induced skeletal muscle atrophy. To our knowledge, this study is the first to examine slow-twitch muscles in LPS-induced muscle wasting after miR-140 manipulation.


Assuntos
MicroRNAs , Sepse , Animais , Camundongos , Lipopolissacarídeos , MicroRNAs/genética , MicroRNAs/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Sepse/complicações , Sepse/genética , Sepse/metabolismo
6.
Development ; 150(10)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37246520

RESUMO

Movement of the vertebrate body is supported by the connection of muscle, tendon and bone. Each skeletal muscle in the vertebrate body has a unique shape and attachment site; however, the mechanism that ensures reproducible muscle patterning is incompletely understood. In this study, we conducted targeted cell ablation using scleraxis (Scx)-Cre to examine the role of Scx-lineage cells in muscle morphogenesis and attachment in mouse embryos. We found that muscle bundle shapes and attachment sites were significantly altered in embryos with Scx-lineage cell ablation. Muscles in the forelimb showed impaired bundle separation and limb girdle muscles distally dislocated from their insertion sites. Scx-lineage cells were required for post-fusion myofiber morphology, but not for the initial segregation of myoblasts in the limb bud. Furthermore, muscles could change their attachment site, even after formation of the insertion. Lineage tracing suggested that the muscle patterning defect was primarily attributed to the reduction of tendon/ligament cells. Our study demonstrates an essential role of Scx-lineage cells in the reproducibility of skeletal muscle attachment, in turn revealing a previously unappreciated tissue-tissue interaction in musculoskeletal morphogenesis.


Assuntos
Osso e Ossos , Tendões , Camundongos , Animais , Reprodutibilidade dos Testes , Membro Anterior , Músculo Esquelético , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética
7.
FEBS Lett ; 597(7): 975-984, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36876986

RESUMO

Conditional knockout mice are valuable tools for examining the functions of targeted genes in a time- and space-specific manner. Here, we generated gene-edited mice by using the Tol2 transposon to introduce guide RNA (gRNA) into fertilized eggs obtained by crossing LSL (loxP-stop-loxP)-CRISPR-associated 9 (Cas9) mice, which express Cas9 in a Cre-dependent manner, with CAG-CreER mice. Transposase mRNA and plasmid DNA, which contained a gRNA sequence for the gene encoding tyrosinase flanked by the transposase recognition sequence, were injected together into fertilized eggs. As a result, the transcribed gRNA cleaved the target genome in a Cas9-dependent manner. Using this method, it is possible to generate conditional genome-edited mice more easily in a shorter period of time.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Camundongos , Animais , Plasmídeos , Camundongos Knockout , Transposases/genética
8.
J Biol Chem ; 299(1): 102791, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36509142

RESUMO

Hypoxia-inducible factor 1α (HIF1α) is a transcription factor that regulates angiogenesis under hypoxic conditions. To investigate the posttranscriptional regulatory mechanism of HIF1α, we performed a cell-based screening to reveal potential cis-elements and the regulatory RNA-binding proteins that act as trans-factors. We found that LIN28A promoted HIF1α protein expression independently of the downregulation of microRNA let-7, which is also directly mediated by LIN28A. Transcriptome analysis and evaluation of RNA stability using RNA-seq and SLAM-seq analyses, respectively, revealed that LIN28A upregulates HIF1A expression via mRNA stabilization. To investigate the physical association of LIN28A with HIF1A mRNA, we performed enhanced crosslinking immunoprecipitation in 293FT cells and integrally analyzed the transcriptome. We observed that LIN28A associates with HIF1A mRNA via its cis-element motif "UGAU". The "UGAU" motifs are recognized by the cold shock domain of LIN28A, and the introduction of a loss-of-function mutation to the cold shock domain diminished the upregulatory activities performed by LIN28A. Finally, the microvessel density assay showed that the expression of LIN28A promoted angiogenesis in vivo. In conclusion, our study elucidated the role of LIN28A in enhancing the HIF1α axis at the posttranscription layer.


Assuntos
Regulação da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia , Estabilidade de RNA , Proteínas de Ligação a RNA , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Regulação para Cima
9.
Bio Protoc ; 12(21)2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36505026

RESUMO

When focusing on quick movements in the analysis of animal behavior, a high-speed camera can be used as a powerful tool. There are many options for high-speed cameras to record movement. In recent years, the quality and sophistication of videos captured on cell phones have evolved so much that the iPhone's slow-motion video system can function as a tool for behavior analysis. Here, we describe a method to analyze the movement of the ankle joint and jump speed during the jumping action of mice, using an iPhone.

10.
Sci Signal ; 15(758): eabl5304, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36318619

RESUMO

Proinflammatory cytokines play critical roles in the pathogenesis of joint diseases. Using a mass spectrometry-based cloning approach, we identified Semaphorin 4D (Sema4D) as an inflammatory cytokine that directly promoted cartilage destruction. Sema4d-deficient mice showed less cartilage destruction than wild-type mice in a model of rheumatoid arthritis. Sema4D induced a proinflammatory response in mouse articular chondrocytes characterized by the induction of proteolytic enzymes that degrade cartilage, such as matrix metalloproteinases (MMPs) and aggrecanases. The activation of Mmp13 and Mmp3 expression in articular chondrocytes by Sema4D did not depend on RhoA, a GTPase that mediates Sema4D-induced cytoskeletal rearrangements. Instead, it required NF-κB signaling and Ras-MEK-Erk1/2 signaling downstream of the receptors Plexin-B2 and c-Met and depended on the transcription factors IκBζ and C/EBPδ. Genetic and pharmacological blockade of these Sema4D signaling pathways inhibited MMP induction in chondrocytes and cartilage destruction in femoral head organ culture. Our results reveal a mechanism by which Sema4D signaling promotes cartilage destruction.


Assuntos
Cartilagem Articular , Camundongos , Animais , Condrócitos , Antígenos CD , Inflamação , Citocinas
11.
Nat Commun ; 13(1): 5655, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36198696

RESUMO

Aging is considered to be accelerated by insulin signaling in lower organisms, but it remained unclear whether this could hold true for mammals. Here we show that mice with skeletal muscle-specific double knockout of Akt1/2, key downstream molecules of insulin signaling, serve as a model of premature sarcopenia with insulin resistance. The knockout mice exhibit a progressive reduction in skeletal muscle mass, impairment of motor function and systemic insulin sensitivity. They also show osteopenia, and reduced lifespan largely due to death from debilitation on normal chow and death from tumor on high-fat diet. These phenotypes are almost reversed by additional knocking out of Foxo1/4, but only partially by additional knocking out of Tsc2 to activate the mTOR pathway. Overall, our data suggest that, unlike in lower organisms, suppression of Akt activity in skeletal muscle of mammals associated with insulin resistance and aging could accelerate osteosarcopenia and consequently reduce lifespan.


Assuntos
Resistência à Insulina , Proteínas Proto-Oncogênicas c-akt , Animais , Insulina/metabolismo , Resistência à Insulina/genética , Longevidade , Mamíferos/metabolismo , Camundongos , Camundongos Knockout , Músculo Esquelético/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo
12.
Sci Transl Med ; 14(647): eabj5557, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35648809

RESUMO

How mechanical stress affects physical performance via tendons is not fully understood. Piezo1 is a mechanosensitive ion channel, and E756del PIEZO1 was recently found as a gain-of-function variant that is common in individuals of African descent. We generated tendon-specific knock-in mice using R2482H Piezo1, a mouse gain-of-function variant, and found that they had higher jumping abilities and faster running speeds than wild-type or muscle-specific knock-in mice. These phenotypes were associated with enhanced tendon anabolism via an increase in tendon-specific transcription factors, Mohawk and Scleraxis, but there was no evidence of changes in muscle. Biomechanical analysis showed that the tendons of R2482H Piezo1 mice were more compliant and stored more elastic energy, consistent with the enhancement of jumping ability. These phenotypes were replicated in mice with tendon-specific R2482H Piezo1 replacement after tendon maturation, indicating that PIEZO1 could be a target for promoting physical performance by enhancing function in mature tendon. The frequency of E756del PIEZO1 was higher in sprinters than in population-matched nonathletic controls in a small Jamaican cohort, suggesting a similar function in humans. Together, this human and mouse genetic and physiological evidence revealed a critical function of tendons in physical performance, which is tightly and robustly regulated by PIEZO1 in tenocytes.


Assuntos
Canais Iônicos , Desempenho Físico Funcional , Tendões , Animais , Canais Iônicos/genética , Camundongos , Estresse Mecânico , Tendões/metabolismo , Fatores de Transcrição
13.
Int J Mol Sci ; 23(11)2022 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-35682994

RESUMO

Healthy limb joints are important for maintaining health and attaining longevity. Endochondral ossification (the replacement of cartilage with bone, occurring during skeletal development) is essential for bone formation, especially in long-axis bones. In contrast to endochondral ossification, chondrocyte populations in articular cartilage persist and maintain joint tissue into adulthood. Articular cartilage, a connective tissue consisting of chondrocytes and their surrounding extracellular matrices, plays an essential role in the mechanical cushioning of joints in postnatal locomotion. Osteoarthritis (OA) pathology relates to disruptions in the balance between anabolic and catabolic signals, that is, the loss of chondrocyte homeostasis due to aging or overuse of cartilages. The onset of OA increases with age, shortening a person's healthy life expectancy. Although many people with OA experience pain, the mainstay of treatment is symptomatic therapy, and no fundamental treatment has yet been established. To establish regenerative or preventative therapies for cartilage diseases, further understanding of the mechanisms of cartilage development, morphosis, and homeostasis is required. In this review, we describe the general development of cartilage and OA pathology, followed by a discussion on anabolic and catabolic signals in cartilage homeostasis, mainly microRNAs.


Assuntos
Cartilagem Articular , Osteoartrite , Adulto , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Condrogênese , Homeostase , Humanos , Osteoartrite/metabolismo
14.
Ann Rheum Dis ; 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35534137

RESUMO

OBJECTIVES: Analysing expression patterns of Krüppel-like factor (KLF) transcription factors in normal and osteoarthritis (OA) human cartilage, and determining functions and mechanisms of KLF4 and KLF2 in joint homoeostasis and OA pathogenesis. METHODS: Experimental approaches included human joint tissues cells, transgenic mice and mouse OA model with viral KLF4 gene delivery to demonstrate therapeutic benefit in structure and pain improvement. Mechanistic studies applied global gene expression analysis and chromatin immunoprecipitation sequencing (ChIP-seq). RESULTS: Several KLF genes were significantly decreased in OA cartilage. Among them, KLF4 and KLF2 were strong inducers of cartilage collagen genes and Proteoglycan-4. Cartilage-specific deletion of Klf2 in mature mice aggravated severity of experimental OA. Transduction of human chondrocytes with Adenovirus (Ad) expressing KLF4 or KLF2 enhanced expression of major cartilage extracellular matrix (ECM) genes and SRY-box transcription factor-9, and suppressed mediators of inflammation and ECM-degrading enzymes. Ad-KLF4 and Ad-KLF2 enhanced similar protective functions in meniscus cells and synoviocytes, and promoted chondrocytic differentiation of human mesenchymal stem cells. Viral KLF4 delivery into mouse knees reduced severity of OA-associated changes in cartilage, meniscus and synovium, and improved pain behaviours. ChIP-seq analysis suggested that KLF4 directly bound cartilage signature genes. Ras-related protein-1 signalling was the most enriched pathway in KLF4-transduced cells, and its signalling axis was involved in upregulating cartilage ECM genes by KLF4 and KLF2. CONCLUSIONS: KLF4 and KLF2 may be central transcription factors that increase protective and regenerative functions in joint tissue cells, suggesting that KLF gene transfer or molecules upregulating KLFs are therapeutic candidates for OA.

15.
Front Cell Dev Biol ; 10: 795441, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35186919

RESUMO

The periodontal ligament (PDL) comprises a fibrous tissue that connects teeth to alveolar bone and is essential for periodontal function. The transcription factor mohawk homeobox (Mkx) is expressed in the PDL where it plays an important role in the development and maintenance of the PDL. However, the precise and critical functions of Mkx in the cell populations comprising PDL have not yet been elucidated. The present study aimed to clarify the effects of a Mkx deficiency on PDL cellular heterogeneity and differences between gene expression in PDL tissues from wild-type (WT) (Mkx +/+ ) and Mkx knockout (Mkx -/- ) rats using single-cell RNA sequencing. We identified 12 cell clusters comprising mesenchymal cells and macrophages. The expression of Mkx and scleraxis (Scx; another key transcription factor of PDL), was mutually exclusive, and partitioned mesenchymal cell clusters into Mkx and Scx types that dominantly expressed proteoglycans and elastic fibers, and type 1 and 3 collagen, respectively. Ossification-related genes were upregulated in mesenchymal cell and osteoblast clusters with more Mkx -/- than Mkx +/+ PDLs. Increased number of cells and inflammatory mediators were observed in macrophage clusters of Mkx -/- PDL. These results suggested that Mkx plays an important role in maintaining PDL homeostasis by regulating specific cell populations and gene expression.

16.
J Tissue Eng ; 13: 20417314221074018, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35083031

RESUMO

Tendons and ligaments are essential connective tissues that connect the muscle and bone. Their recovery from injuries is known to be poor, highlighting the crucial need for an effective therapy. A few reports have described the development of artificial ligaments with sufficient strength from human cells. In this study, we successfully generated a tendon-like tissue (bio-tendon) using human induced pluripotent stem cells (iPSCs). We first differentiated human iPSCs into mesenchymal stem cells (iPSC-MSCs) and transfected them with Mohawk (Mkx) to obtain Mkx-iPSC-MSCs, which were applied to a newly designed chamber with a mechanical stretch incubation system. The embedded Mkx-iPSC-MSCs created bio-tendons and exhibited an aligned extracellular matrix structure. Transplantation of the bio-tendons into a mouse Achilles tendon rupture model showed host-derived cell infiltration with improved histological score and biomechanical properties. Taken together, the bio-tendon generated in this study has potential clinical applications for tendon/ligament-related injuries and diseases.

17.
Nat Commun ; 12(1): 4148, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34230481

RESUMO

Osteoarthritis (OA), the most common aging-related joint disease, is caused by an imbalance between extracellular matrix synthesis and degradation. Here, we discover that both strands of microRNA-455 (miR-455), -5p and -3p, are up-regulated by Sox9, an essential transcription factor for cartilage differentiation and function. Both miR-455-5p and -3p are highly expressed in human chondrocytes from normal articular cartilage and in mouse primary chondrocytes. We generate miR-455 knockout mice, and find that cartilage degeneration mimicking OA and elevated expression of cartilage degeneration-related genes are observed at 6-months-old. Using a cell-based miRNA target screening system, we identify hypoxia-inducible factor-2α (HIF-2α), a catabolic factor for cartilage homeostasis, as a direct target of both miR-455-5p and -3p. In addition, overexpression of both miR-455-5p and -3p protect cartilage degeneration in a mouse OA model, demonstrating their potential therapeutic value. Furthermore, knockdown of HIF-2α in 6-month-old miR-455 knockout cartilage rescues the elevated expression of cartilage degeneration-related genes. These data demonstrate that both strands of a miRNA target the same gene to regulate articular cartilage homeostasis.


Assuntos
Cartilagem/metabolismo , Homeostase , Hipóxia/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fatores de Transcrição/metabolismo , Animais , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Knockout , Osteoartrite/genética , Fatores de Transcrição SOX9
18.
J Bone Miner Metab ; 39(5): 780-786, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33988755

RESUMO

INTRODUCTION: The periodontal ligament (PDL) plays an important role in orthodontic tooth movement; however, the underlying molecular mechanism remains unclear. We have previously reported that the Mohawk homeobox (Mkx), a tendon-specific transcription factor, is expressed in the PDL and regulates its homeostasis. MATERIALS AND METHODS: In the present study, we examined the role of Mkx in orthodontic tooth movement via bone remodeling induced by mechanical stimulation in Mkx-deficient rats, which are widely used as experimental animals for orthodontic force application. Orthodontic tooth movement of the maxillary first molar was performed in 7-week-old male Mkx-deficient rats (n = 4) and wild-type Wistar rats (n = 4) using coil springs for 14 days. Hematoxylin and eosin (H&E) staining and tartrate-resistant acid phosphatase (TRAP) staining were performed to evaluate morphological changes and osteoclasts. Furthermore, changes in the expression of receptor activator nuclear factor-kappa B ligand (RANKL) were demonstrated using immunostaining. RESULTS: The amount of tooth movement was significantly lower in Mkx-deficient rats than in wild-type rats. The number of TRAP-positive cells was suppressed in Mkx-deficient rats on the compression side. CONCLUSION: Orthodontic tooth movement experiments in Mkx-deficient rats suggested that Mkx is involved in osteoclast induction at the alveolar bone surface on the compression side. This study reveals the possibility that Mkx plays a mechanosensory role in orthodontic tooth movement by inducing RANKL expression and osteoclastogenesis.


Assuntos
Osteoclastos , Técnicas de Movimentação Dentária , Animais , Remodelação Óssea , Masculino , Ligamento Periodontal , Ratos , Ratos Wistar , Fosfatase Ácida Resistente a Tartarato
19.
FEBS Lett ; 595(5): 563-576, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33421110

RESUMO

Programmed death-ligand 1 (PD-L1) is a co-inhibitory molecule expressed on tumor cells. Immune checkpoint inhibitors focusing on the PD-L1 mechanism are now being studied for the treatment of various cancer types. However, the regulatory mechanism of PD-L1 is yet to be fully clarified, and a high-throughput system for comparing the abilities of small compounds in regulating PD-L1 has not yet been established. Therefore, we created a HiBiT-tagged lung adenocarcinoma cell line, PC9-KI, for easier and faster detection of changes in PD-L1 protein expression. Using PC9-KI cells, we screened 1280 chemical compounds from the Library of Pharmacologically Active Compounds and identified microtubule polymerization inhibitors and thapsigargin as PD-L1 upregulators and a p97 inhibitor as a PD-L1 downregulator.


Assuntos
Antineoplásicos/farmacologia , Antígeno B7-H1/genética , Proteínas Recombinantes de Fusão/genética , Mucosa Respiratória/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Moduladores de Tubulina/farmacologia , Antígeno B7-H1/agonistas , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/metabolismo , Benzimidazóis/farmacologia , Linhagem Celular Tumoral , Efeito Fundador , Expressão Gênica , Genes Reporter , Ensaios de Triagem em Larga Escala , Humanos , Medições Luminescentes , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Engenharia de Proteínas/métodos , Quinazolinas/farmacologia , Proteínas Recombinantes de Fusão/metabolismo , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Tapsigargina/farmacologia , Proteína com Valosina/antagonistas & inibidores , Proteína com Valosina/genética , Proteína com Valosina/metabolismo
20.
Methods Mol Biol ; 2245: 151-166, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33315201

RESUMO

MicroRNAs (miRNAs) are a class of noncoding small RNAs, which play a critical role in various biological processes including musculoskeletal formation and arthritis pathogenesis via regulating target gene expressions, raising the potentially substantial effects on gene expression networks. Over 2000 miRNAs are encoded in the human genome and a single miRNA potentially targets hundreds of genes. To examine the expression and function of miRNAs in chondrocytes and arthritis pathogenesis, we describe the protocols for the current miRNA related experiments including miRNA expression profiling by (1) Next Generation Sequencing and by TaqMan Array system, (2) miRNA target prediction by TargetScan, (3) miRNA target screening by cell-based reporter library assay, and (4) miRNA and its target interaction by HITS-CLIP (high-throughput sequencing of RNAs isolated by cross-linking immunoprecipitation) in cartilage and chondrocyte research.


Assuntos
Condrócitos/metabolismo , Perfilação da Expressão Gênica , MicroRNAs/genética , Interferência de RNA , RNA Mensageiro/genética , Transcriptoma , Regulação da Expressão Gênica , Biblioteca Gênica , Genes Reporter , Sequenciamento de Nucleotídeos em Larga Escala , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA