Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 49(46): 16849-16859, 2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33179669

RESUMO

Co-doped hexagonal Sr1-x/2Al2-xSixO4:Eu2+,Dy3+ (0.1 ≤ x ≤ 0.5) transparent ceramics have been elaborated by full glass crystallization. The compositions with low SiO2 content (x ≤ 0.4) require fast quenching conditions to form glass, i.e. specific elaboration processes such as aerodynamic levitation coupled to laser heating, whereas the x = 0.5 glass composition can be prepared on a large scale by the classic melt-quenching method in commercial furnaces. After a single thermal treatment, the resulting SrAl2O4-based transparent ceramics show varying photoluminescence emission properties when x increases. These variations are also observable in persistent luminescence, resulting in an afterglow colour-tuning ranging from green to light blue. Afterglow excitation spectra highlight the possible activation in the visible range of the obtained persistent luminescence. Indeed, persistent luminescence of hexagonal Sr0.75Al1.5Si0.5O4:Eu2+,Dy3+ large transparent ceramics has been successfully charged using a typical smartphone low power white light source. Moreover, thermoluminescence glow curves of samples containing different Dy3+ doping concentrations are studied to gain insights regarding the traps' origin and depth. Coupling thermoluminescence results together with luminescence thermal quenching and band gap calculations appear useful to understand the charge trapping and detrapping evolution with the material composition. Varying the Si-content in hexagonal Sr1-x/2Al2-xSixO4:Eu2+,Dy3+ compounds appears as a promising strategy to obtain transparent materials with tuneable green to light blue persistent luminescence.

2.
Phys Chem Chem Phys ; 20(27): 18380-18390, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29943777

RESUMO

In this work we present the results of photocurrent excitation spectroscopy (PCE) of Gd3Al2Ga3O12:Ce3+ (GAGG:Ce3+) and Gd3Ga5O12:Ce3+ (GGG:Ce3+) performed at temperatures ranging from 100 to 500 K supplemented by spectroscopic measurements (steady state and time resolved photoluminescence spectroscopy) performed at temperatures ranging from 10 to 500 K and at high pressure up to 300 kbar. The PCE spectra contain bands related to transitions from the ground state 2F5/2 of the 4f1 electronic configuration to the crystal field split states related to the 5d1 electronic configuration of Ce3+. This implicates the presence of the autoionization process - transfer of electrons from the localized, excited states of Ce3+ to the conduction band (CB), directly linked to luminescence quenching of Ce3+. The mechanism of autoionization of GAGG:Ce3+ and GGG:Ce3+ was determined to be different on the grounds of differences in temperature dependence of photocurrent intensity. The latter system exhibits autoionization, which occurs when all of the 5d excited states are degenerated with the CB, whereas in the former system, the autoionization process is thermally assisted with an activation energy barrier (distance to the edge of the CB) of approximately 1600 cm-1. In GGG:Ce3+ the degeneracy of 5d1 states of Ce3+ was lifted by application of high pressure, shifting the edge of the CB up and exposing Ce3+ luminescence at 20 kbar. Further spectroscopic analyses of the pressure-temperature dependence of the luminescence decay time as well as the temperature dependence of photocurrent intensity of GGG:Ce3+ have independently shown existence of a luminescence quenching state located approximately 600 cm-1 below the CB, attributed to the impurity trapped exciton.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA