Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(14): e2111565119, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35344437

RESUMO

SignificanceStrigolactones (SLs) are a group of apocarotenoid hormones, which regulates shoot branching and other diverse developmental processes in plants. The major bioactive form(s) of SLs as endogenous hormones has not yet been clarified. Here, we identify an Arabidopsis methyltransferase, CLAMT, responsible for the conversion of an inactive precursor to a biologically active SL that can interact with the SL receptor in vitro. Reverse genetic analysis showed that this enzyme plays an essential role in inhibiting shoot branching. This mutant also contributed to specifying the SL-related metabolites that could move from root to shoot in grafting experiments. Our work has identified a key enzyme necessary for the production of the bioactive form(s) of SLs.


Assuntos
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Hormônios/metabolismo , Lactonas/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/metabolismo
2.
Phytochemistry ; 174: 112349, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32213359

RESUMO

Strigolactones (SLs) are a group of plant apocarotenoids that act as rhizosphere signaling molecules for both arbuscular mycorrhizal fungi and root parasitic plants. They also regulate plant architecture as phytohormones. The model legume Lotus japonicus (synonym of Lotus corniculatus) produces canonical 5-deoxystrigol (5DS) and non-canonical lotuslactone (LL). The biosynthesis pathways of the two SLs remain elusive. In this study, we characterized the L. japonicus MAX1 homolog, LjMAX1, found in the Lotus japonicus genome assembly build 2.5. The L. japonicus max1 LORE1 insertion mutant was deficient in 5DS and LL production. A recombinant LjMAX1 protein expressed in yeast microsomes converted carlactone (CL) to 18-hydroxycarlactonoic acid (18-OH-CLA) via carlactonoic acid (CLA). Identity of 18-OH-CLA was confirmed by comparison of the methyl ester derivative of the MAX1 product with chemically synthesized methyl 18-hydroycarlactonoate (18-OH-MeCLA) using LC-MS/MS. (11R)-CL was detected as an endogenous compound in the root of L. japonicus.13C-labeled CL, CLA, and 18-OH-MeCLA were converted to [13C]-5DS and LL in plant feeding experiments using L. japonicus WT. These results showed that LjMAX1 is the crucial enzyme in the biosynthesis of Lotus SLs and that 18-hydroxylated carlactonoates are possible precursors for SL biosynthesis in L. japonicus.


Assuntos
Lotus , Vias Biossintéticas , Cromatografia Líquida , Reguladores de Crescimento de Plantas , Raízes de Plantas , Espectrometria de Massas em Tandem
3.
Proc Natl Acad Sci U S A ; 111(50): 18084-9, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25425668

RESUMO

Strigolactones (SLs) stimulate seed germination of root parasitic plants and induce hyphal branching of arbuscular mycorrhizal fungi in the rhizosphere. In addition, they have been classified as a new group of plant hormones essential for shoot branching inhibition. It has been demonstrated thus far that SLs are derived from carotenoid via a biosynthetic precursor carlactone (CL), which is produced by sequential reactions of DWARF27 (D27) enzyme and two carotenoid cleavage dioxygenases CCD7 and CCD8. We previously found an extreme accumulation of CL in the more axillary growth1 (max1) mutant of Arabidopsis, which exhibits increased lateral inflorescences due to SL deficiency, indicating that CL is a probable substrate for MAX1 (CYP711A1), a cytochrome P450 monooxygenase. To elucidate the enzymatic function of MAX1 in SL biosynthesis, we incubated CL with a recombinant MAX1 protein expressed in yeast microsomes. MAX1 catalyzed consecutive oxidations at C-19 of CL to convert the C-19 methyl group into carboxylic acid, 9-desmethyl-9-carboxy-CL [designated as carlactonoic acid (CLA)]. We also identified endogenous CLA and its methyl ester [methyl carlactonoate (MeCLA)] in Arabidopsis plants using LC-MS/MS. Although an exogenous application of either CLA or MeCLA suppressed the growth of lateral inflorescences of the max1 mutant, MeCLA, but not CLA, interacted with Arabidopsis thaliana DWARF14 (AtD14) protein, a putative SL receptor, as shown by differential scanning fluorimetry and hydrolysis activity tests. These results indicate that not only known SLs but also MeCLA are biologically active in inhibiting shoot branching in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Vias Biossintéticas/fisiologia , Ácidos Carboxílicos/metabolismo , Lactonas/metabolismo , Reguladores de Crescimento de Plantas/biossíntese , Cromatografia Líquida , Clonagem Molecular , Escherichia coli , Ésteres/metabolismo , Vetores Genéticos/genética , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Espectrometria de Massas em Tandem , Leveduras
4.
Proc Natl Acad Sci U S A ; 111(4): 1640-5, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-24434551

RESUMO

Strigolactones (SLs) are a class of terpenoid plant hormones that regulate shoot branching as well as being known as root-derived signals for symbiosis and parasitism. SL has tricyclic-lactone (ABC-ring) and methyl butenolide (D-ring), and they are connected through an enol ether bridge. Recently, a putative biosynthetic intermediate called carlactone (CL), of which carbon skeleton is in part similar to those of SLs, was identified by biochemical analysis of three biosynthetic enzymes, DWARF27, CAROTENOID CLEAVAGE DIOXYGENASE 7 (CCD7), and CCD8 in vitro. However, CL has never been identified from plant tissues, and the conversion of CL to SLs has not been proven in vivo. To address these questions, we chemically synthesized (13)C-labeled CL. We show that (13)C-labeled CL is converted to (-)-[(13)C]-2'-epi-5-deoxystrigol ((-)-2'-epi-5DS) and [(13)C]-orobanchol, endogenous SLs in rice, in the dwarf10 mutant, which is defective in CCD8. In addition, we successfully identified endogenous CL by using liquid chromatography-quadrupole/time-of-flight tandem mass spectrometry in rice and Arabidopsis. Furthermore, we determined the absolute stereochemistry of endogenous CL to be (11R)-configuration, which is the same as that of (-)-2'-epi-5DS at the corresponding position. Feeding experiments showed that only the (11R)-isomer of CL, but not the (11S)-isomer, was converted to (-)-2'-epi-5DS in vivo. Taken together, our data provide conclusive evidence that CL is an endogenous SL precursor that is stereospecifically recognized in the biosynthesis pathway.


Assuntos
Lactonas/metabolismo , Vias Biossintéticas , Cromatografia Líquida , Oryza/metabolismo , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA