Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 11(6)2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32599710

RESUMO

Several species of herbivores feed on maize in field and storage setups, making the development of multiple insect resistance a critical breeding target. In this study, an association mapping panel of 341 tropical maize lines was evaluated in three field environments for resistance to fall armyworm (FAW), whilst bulked grains were subjected to a maize weevil (MW) bioassay and genotyped with Diversity Array Technology's single nucleotide polymorphisms (SNPs) markers. A multi-locus genome-wide association study (GWAS) revealed 62 quantitative trait nucleotides (QTNs) associated with FAW and MW resistance traits on all 10 maize chromosomes, of which, 47 and 31 were discovered at stringent Bonferroni genome-wide significance levels of 0.05 and 0.01, respectively, and located within or close to multiple insect resistance genomic regions (MIRGRs) concerning FAW, SB, and MW. Sixteen QTNs influenced multiple traits, of which, six were associated with resistance to both FAW and MW, suggesting a pleiotropic genetic control. Functional prioritization of candidate genes (CGs) located within 10-30 kb of the QTNs revealed 64 putative GWAS-based CGs (GbCGs) showing evidence of involvement in plant defense mechanisms. Only one GbCG was associated with each of the five of the six combined resistance QTNs, thus reinforcing the pleiotropy hypothesis. In addition, through in silico co-functional network inferences, an additional 107 network-based CGs (NbCGs), biologically connected to the 64 GbCGs, and differentially expressed under biotic or abiotic stress, were revealed within MIRGRs. The provided multiple insect resistance physical map should contribute to the development of combined insect resistance in maize.


Assuntos
Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas/genética , Zea mays/genética , Animais , Mapeamento Cromossômico , Genômica , Genótipo , Controle de Pragas , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Polimorfismo de Nucleotídeo Único/genética , Gorgulhos/genética , Gorgulhos/patogenicidade , Zea mays/crescimento & desenvolvimento , Zea mays/parasitologia
2.
Cereal Res Commun ; 47(1): 134-144, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-33304016

RESUMO

Insights into the diversity and relationships among elite breeding materials are an important component in maize improvement programs. We genotyped 63 inbred lines bred for high levels of provitamin A using 137 single nucleotide polymorphism markers. A total of 272 alleles were detected with gene diversity of 0.36. Average genetic distance was 0.36 with 56% of the pairs of lines having between 0.30 and 0.40. Eighty-six percent of the pairs of lines showed relative kinship values <0.50, which indicated that the majority of these provitamin A inbred lines were unique. Relationship pattern and population structure analysis revealed presence of seven major groups with good agreement with Neighbour Joining clustering and somewhat correlated with pedigree and breeding origin. Utilization of this set of provitamin A lines in a new biofortification program will be aided by information from both molecular-based grouping and pedigree analysis. The results should guide breeders in selecting parents for hybrid formation and testing as a short-term objective, and parents with diverse alleles for new breeding starts as a long-term objective in a provitamin A breeding program.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA