Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Metabolites ; 13(11)2023 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-37999257

RESUMO

Salinity is considered to be a global problem and a severe danger to modern agriculture since it negatively impacts plants' growth and development at both cellular- and whole-plant level. However, cobalt (Co) and titanium (Ti), multifunctional non-essential micro-elements, play a crucial role in improving plant growth and development under salinity stress. In the current study, Co and Ti impact on the morphological, biochemical, nutritional, and metabolic profile of Pennisetum divisum plants under three salinity levels which were assessed. Two concentrations of Co (Co-1; 15.0 mg/L and Co-2; 25.0 mg/L), and two concentrations of Ti (Ti-1; 50.0 mg/L and Ti-2; 100.0 mg/L) were applied as foliar application to the P. divisum plants under salinity (S1; 200 mM, S2; 500 mM, and S3; 1000 mM) stress. The results revealed that various morphological, biochemical, and metabolic processes were drastically impacted by the salinity-induced methylglyoxal (MG) stress. The excessive accumulation of salt ions, including Na+ (1.24- and 1.21-fold), and Cl- (1.53- and 1.15-fold) in leaves and roots of P. divisum, resulted in the higher production of MG (2.77- and 2.95-fold) in leaves and roots under severe (1000 mM) salinity stress, respectively. However, Ti-treated leaves showed a significant reduction in ionic imbalance and MG concentrations, whereas considerable improvement was shown in K+ and Ca2+ under salinity stress, and Co treatment showed downregulation of MG content (26, 16, and 14%) and improved the antioxidant activity, such as a reduction in glutathione (GSH), oxidized glutathione (GSSG), Glutathione reductase (GR), Glyoxalase I (Gly I), and Glyoxalase II (Gly II) by up to 1.13-, 1.35-, 3.75-, 2.08-, and 1.68-fold under severe salinity stress in P. divisum roots. Furthermore, MG-induced stress negatively impacted the metabolic profile and antioxidants activity of P. divisum's root and leaves; however, Co and Ti treatment considerably improved the biochemical processes and metabolic profile in both underground and aerial parts of the studied plants. Collectively, the results depicted that Co treatment showed significant results in roots and Ti treatment presented considerable changes in leaves of P. divism under salinity stress.

2.
ACS Omega ; 8(25): 22575-22588, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37396242

RESUMO

Soil salinization has become a major issue around the world in recent years, as it is one of the consequences of climate change as sea levels rise. It is crucial to lessen the severe consequences of soil salinization on plants. A pot experiment was conducted to regulate the physiological and biochemical mechanisms in order to evaluate the ameliorative effects of potassium nitrate (KNO3) on Raphanus sativus L. genotypes under salt stress. The results from the present study illustrated that the salinity stress induced a significant decrease in shoot length, root length, shoot fresh weight, shoot dry weight, root fresh weight, root dry weight, number of leaves per plant, leaf area chlorophyll-a, chlorophyll-b, total chlorophyll, carotenoid, net photosynthesis, stomatal conductance, and transpiration rate by 43, 67, 41, 21, 34, 28, 74, 91, 50, 41, 24, 34, 14, 26, and 67%, respectively, in a 40 day radish while decreased by 34, 61, 49, 19, 31, 27, 70, 81, 41, 16, 31, 11, 21, and 62%, respectively, in Mino radish. Furthermore, MDA, H2O2 initiation, and EL (%) of two varieties (40 day radish and Mino radish) of R. sativus increased significantly (P < 0.05) by 86, 26, and 72%, respectively, in the roots and also increased by 76, 106, and 38% in the leaves in a 40 day radish, compared to the untreated plants. The results also elucidated that the contents of phenolic, flavonoids, ascorbic acid, and anthocyanin in the two varieties (40 day radish and Mino radish) of R. sativus increased with the exogenous application of KNO3 by 41, 43, 24, and 37%, respectively, in the 40 day radish grown under the controlled treatments. Results indicated that implementing KNO3 exogenously in the soil increased the activities of antioxidants like SOD, CAT, POD, and APX by 64, 24, 36, and 84% in the roots and also increased by 21, 12, 23, and 60% in the leaves of 40 day radish while also increased by 42, 13, 18, and 60% in the roots and also increased by 13, 14, 16, and 41% in the leaves in Mino radish, respectively, in comparison to those plants grown without KNO3. We found that KNO3 substantially improved plant growth by lowering the levels of oxidative stress biomarkers, thereby further stimulating the antioxidant potential system, which led to an improved nutritional profile of both R. sativus L. genotypes under normal and stressed conditions. The current study would offer a deep theoretical foundation for clarifying the physiological and biochemical mechanisms by which the KNO3 improves salt tolerance in R. sativus L. genotypes.

3.
Plant Physiol Biochem ; 199: 107720, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37178570

RESUMO

Excessive use of nitrogen fertilizers enhanced the stem lodging, leading to serious threats to environmental sustainability. As the maize-soybean intercropping system is eco-friendly, however, soybean micro-climate hinders soybean growth and caused lodging. Since the relationship between nitrogen and lodging resistance under the intercropping system is not widely studied. Therefore, a pot experiment was conducted with the application of different nitrogen concentrations referring to low nitrogen (LN) = 0 mg/kg, optimum nitrogen (OpN) = 100 mg/kg, and high nitrogen (HN) = 300 mg/kg. To evaluate the optimum nitrogen fertilization under the maize-soybean intercropping system, two soybean cultivars were selected Tianlong 1 (TL-1), (lodging resistant) and Chuandou 16 (CD-16), (lodging susceptible). The results revealed that under the intercropping system, the OpN concentration significantly improved the lodging resistance of soybean cultivars by reducing the plant height of TL-1 and CD-16 by 4 and 28% as compared to LN, respectively. Following OpN, the lodging resistance index for CD-16 was also increased by 67% and 59% under the respective cropping systems. In addition, we found that OpN concentration prompted the lignin biosynthesis by stimulating the enzymatic activities of lignin biosynthetic enzymes (PAL, 4CL, CAD, and POD), which was reflected at the transcriptional levels (GmPAL, GmPOD, GmCAD, Gm4CL), too. Henceforth, we proposed that optimum nitrogen fertilization boosts soybean stem lodging resistance by modulating the lignin metabolism in the maize-soybean intercropping system.


Assuntos
Glycine max , Lignina , Lignina/metabolismo , Glycine max/metabolismo , Nitrogênio/metabolismo , Metabolismo Secundário , Zea mays/metabolismo , Agricultura/métodos
4.
Environ Sci Pollut Res Int ; 30(31): 76555-76574, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37243763

RESUMO

Soil contamination with toxic heavy metals (such as arsenic (As)) is becoming a serious global problem due to rapid development of social economy, although the use of silicon (Si) and sodium hydrosulfide (NaHS) has been found effective in enhancing plant tolerance against biotic and abiotic stresses including the As toxicity. For this purpose, a pot experiment was conducted using the different levels of As toxicity in the soil, i.e., (0 mM (no As), 50, and 100 µM) which were also supplied with the different exogenous levels of Si, i.e., (0 (no Si), 1.5, and 3 mM) and also with the NaHS, i.e., (0 (no NaHS), 1, and 2 mM) on growth, photosynthetic pigments, gas exchange characteristics, oxidative stress biomarkers, antioxidant machinery (enzymatic and non-enzymatic antioxidants), and their gene expression, ion uptake, organic acid exudation, and As uptake of maize (Zea mays L.). Results from the present study showed that the increasing levels of As in the soil significantly (P < 0.05) decreased plant growth and biomass, photosynthetic pigments, gas exchange attributes, sugars, and nutritional contents from the roots and shoots of the plants. In contrast, increasing levels of As in the soil significantly (P < 0.05) increased oxidative stress indicators in terms of malondialdehyde, hydrogen peroxide, and electrolyte leakage and also increased organic acid exudation patter in the roots of Z. mays, although the activities of enzymatic antioxidants and the response of their gene expressions in the roots and shoots of the plants and non-enzymatic such as phenolic, flavonoid, ascorbic acid, and anthocyanin contents were initially increased with the exposure of 50 µM As, but decreased by the increasing the As concentration 100 µM in the soil. The negative impact of As toxicity can overcome the application of Si and NaHS, which ultimately increased plant growth and biomass by capturing the reactive oxygen species and decreased oxidative stress in Z. mays by decreasing the As contents in the roots and shoots of the plants. Our results also showed that the Si was more sever and showed better results when we compared with NaHS under the same treatment of As in the soil. Research findings, therefore, suggest that the combined application of Si and NaHS can ameliorate As toxicity in Z. mays, resulting in improved plant growth and composition under metal stress, as depicted by balanced exudation of organic acids.


Assuntos
Arsênio , Poluentes do Solo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Silício/farmacologia , Silício/metabolismo , Zea mays , Arsênio/metabolismo , Solo/química , Poluentes do Solo/análise , Raízes de Plantas/metabolismo
5.
Front Plant Sci ; 14: 1201047, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37215288
6.
Metabolites ; 13(4)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37110169

RESUMO

We investigated biochar-induced drought tolerance in Leptocohloa fusca (Kallar grass) by exploring the plant defense system at physiological level. L. fusca plants were exposed to drought stress (100%, 70%, and 30% field capacity), and biochar (BC), as an organic soil amendment was applied in two concentrations (15 and 30 mg kg-1 soil) to induce drought tolerance. Our results demonstrated that drought restricted the growth of L. fusca by inhibiting shoot and root (fresh and dry) weight, total chlorophyll content and photosynthetic rate. Under drought stress, the uptake of essential nutrients was also limited due to lower water supply, which ultimately affected metabolites including amino and organic acids, and soluble sugars. In addition, drought stress induced oxidative stress, which is evidenced by the higher production of reactive oxygen species (ROS) including hydrogen peroxide (H2O2), superoxide ion (O2-), hydroxyl ion (OH-), and malondialdehyde (MDA). The current study revealed that stress-induced oxidative injury is not a linear path, since the excessive production of lipid peroxidation led to the accumulation of methylglyoxal (MG), a member of reactive carbonyl species (RCS), which ultimately caused cell injury. As a consequence of oxidative-stress induction, the ascorbate-glutathione (AsA-GSH) pathway, followed by a series of reactions, was activated by the plants to reduce ROS-induced oxidative damage. Furthermore, biochar considerably improved plant growth and development by mediating metabolites and soil physio-chemical status.

7.
Physiol Plant ; 175(2): e13887, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36894826

RESUMO

The modulation of hormone and metabolite levels by ascorbate (ASA) and hydrogen peroxide (H2 O2 ) was compared during post-germination growth in shoots of wheat. Treatment with ASA resulted in a greater reduction of growth than the addition of H2 O2 . ASA also had a larger effect on the redox state of the shoot tissues as shown by the higher ASA and glutathione (GSH) levels, lower glutathione disulfide (GSSG) content and GSSG/GSH ratio compared to the H2 O2 treatment. Apart from common responses (i.e., increase of cis-zeatin and its O-glucosides), the contents of several compounds related to cytokinin (CK) and abscisic acid (ABA) metabolism were greater after ASA application. These differences in the redox state and hormone metabolism following the two treatments may be responsible for their distinct influence on various metabolic pathways. Namely, the glycolysis and citrate cycle were inhibited by ASA and they were not affected by H2 O2 , while the amino acid metabolism was induced by ASA and repressed by H2 O2 based on the changes in the level of the related carbohydrates, organic and amino acids. The first two pathways produce reducing power, while the last one needs it; therefore ASA, as a reductant may suppress and induce them, respectively. H2 O2 as an oxidant had different effect, namely it did not alter glycolysis and citrate cycle, and inhibited the formation of amino acids.


Assuntos
Germinação , Peróxido de Hidrogênio , Peróxido de Hidrogênio/metabolismo , Dissulfeto de Glutationa/metabolismo , Triticum/metabolismo , Ácido Ascórbico/metabolismo , Glutationa/metabolismo , Aminoácidos/metabolismo , Hormônios/metabolismo
8.
Front Plant Sci ; 13: 1037632, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466283

RESUMO

Modern era of agriculture is concerned with the environmental influence on crop growth and development. Shading is one of the crucial factors affecting crop growth considerably, which has been neglected over the years. Therefore, a two-year field experiment was aimed to investigate the effects of shading at flowering (S1) and pod development (S2) stages on nitrogen (N) dynamics, carbohydrates and yield of rapeseed. Two rapeseed genotypes (Chuannong and Zhongyouza) were selected to evaluate the effects of shading on 15N trace isotopes, enzymatic activities, dry matter, nitrogen and carbohydrate distribution and their relationship with yield. The results demonstrated that both shading treatments disturbed the nitrogen accumulation and transportation at the maturity stage. It was found that shading induced the downregulation of the N mobilizing enzymes (NR, NiR, GS, and GOGAT) in leaves and pods at both developmental stages. Shading at both growth stages resulted in reduced dry matter of both varieties but only S2 exhibited the decline in pod shell and seeds dry weight in both years. Besides this, carbohydrates distribution toward economic organs was declined by S2 treatment and its substantial impact was also experienced in seed weight and seeds number per pod which ultimately decreased the yield in both genotypes. We also revealed that yield is positively correlated with dry matter, nitrogen content and carbohydrates transportation. In contrast to Chuannong, the Zhongyouza genotype performed relatively better under shade stress. Overall, it was noticed that shading at pod developmental stage considerable affected the transportation of N and carbohydrates which led to reduced rapeseed yield as compared to shading at flowering stage. Our study provides basic theoretical support for the management techniques of rapeseed grown under low light regions and revealed the critical growth stage which can be negatively impacted by low light.

9.
Plants (Basel) ; 11(22)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36432784

RESUMO

Calligonum mongolicum is a phreatophyte playing an important role in sand dune fixation, but little is known about its responses to drought and P fertilization. In the present study, we performed a pot experiment to investigate the effects of P fertilization under drought or well-watered conditions on multiple morpho-physio-biochemical attributes of C. mongolicum seedlings. Drought stress leads to a higher production of hydrogen peroxide (H2O2) and malondialdehyde (MDA), leading to impaired growth and metabolism. However, C. mongolicum exhibited effective drought tolerance strategies, including a higher accumulation of soluble sugars, starch, soluble protein, proline, and significantly higheractivities of peroxidase (POD) and catalase (CAT) enzymes. P fertilization increased the productivity of drought-stressed seedlings by increasing their growth, assimilative shoots relative water content, photosynthetic pigments, osmolytes accumulation, mineral nutrition, N assimilation, and reduced lipid peroxidation. Our findings suggest the presence of soil high P depletion and C. mongolicum high P requirements during the initial growth stage. Thus, P can be utilized as a fertilizer to enhance the growth and productivity of Calligonum vegetation and to reduce the fragility of the hyper-arid desert of Taklamakan in the context of future climate change.

10.
Front Plant Sci ; 13: 1018787, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36330265

RESUMO

Cyperus esculentus L. var. sativus Boeck (commonly called Chufa) is a perennial species that produces nutritious underground tubers and contributes to the diet and health of human worldwide. However, it is salt-sensitive and its adaptation to salinity stress remains an enigma. Naphthaleneacetic acid (NAA) plays a vital role in regulating plant salt stress tolerance. Thus, we aimed to investigate the impact of NAA (150 mg/L) application on growth and physio-biochemical response mechanisms of Chufa plants to different levels of salinity stress (0-, 90-, and 180 mM of alkaline stress ([1:1 ratio of Na2CO3 and NaHCO3]). In response to increasing stress levels, shoot-root growth decreased, whereas malondialdehyde (MDA), hydrogen peroxide (H2O2), osmolytes (soluble protein, proline, and soluble sugars), and activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) significantly increased. Alkalinity led to significant increase in Na+ and Cl-, but decrease in Mg2+ concentration in both roots and leaves; however, K+ decreased significantly in leaves under both stresses. Additionally, NO 3 - and. levels, nitrate reductase (NR) activities, and glutamate synthase (GOGAT) decreased significantly. However, glutamine synthetase (GS) increased non-significantly at 90 mM but declined at 180 mM. Foliar NAA application reduced Na+ and Cl-, MDA, and H2O2 but increased photosynthetic pigments, K+ and Mg2+, osmolytes, nitrogen (N) metabolism, and upregulating the enzymatic antioxidant system to reduce oxidative stress under alkaline conditions. Hence, our findings manifest that NAA application is an effective strategy that can be utilized to enhance tolerance of chufa plants to alkaline stress. Future studies should explore whether NAA can positively alter the nutrient composition of chufa tubers at deeper molecular levels, which might offer solutions to nutritious problems in developing countries.

11.
Plants (Basel) ; 11(19)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36235345

RESUMO

It has been shown that jasmonic acid (JA) can alleviate drought stress. Nevertheless, there are still many questions regarding the JA-induced physiological and biochemical mechanisms that underlie the adaptation of plants to drought stress. Hence, the aim of this study was to investigate whether JA application was beneficial for the antioxidant activity, plant performance, and growth of Grewia asiatica L. Therefore, a study was conducted on G. asiatica plants aged six months, exposing them to 100% and 60% of their field capacity. A JA application was only made when the plants were experiencing moderate drought stress (average stem water potential of 1.0 MPa, considered moderate drought stress), and physiological and biochemical measures were monitored throughout the 14-day period. In contrast to untreated plants, the JA-treated plants displayed an improvement in plant growth by 15.5% and increased CO2 assimilation (AN) by 43.9% as well as stomatal conductance (GS) by 42.7% on day 3. The ascorbate peroxidase (APX), glutathione peroxidase (GPX), and superoxide dismutase (SOD) activities of drought-stressed JA-treated plants increased by 87%, 78%, and 60%, respectively, on day 3. In addition, G. asiatica plants stressed by drought accumulated 34% more phenolics and 63% more antioxidants when exposed to JA. This study aimed to understand the mechanism by which G. asiatica survives in drought conditions by utilizing the JA system.

12.
Life (Basel) ; 12(10)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36294914

RESUMO

Wheat is the third most producing crop in China after maize and rice. In order to enhance the nitrogen use efficiency (NUE) and grain yield of winter wheat, a two-year field experiment was conducted to investigate the effect of different nitrogen ratios and doses at various development stages of winter wheat (Triticum aestivum L.). A total of five N doses (0, N75, N150, N225, and N300 kg ha-1) as main plots and two N ratios were applied in split doses (50%:50% and 60%:40%, referring to 50% at sowing time and 50% at jointing stage, 50% at sowing time + 50% at flowering stage, 50% at sowing time + 50% at grain filling stage, and 60% + 40% N ratio applied as a 60% at sowing time and 40% at jointing stage, 60% at sowing time and 40% at flowering stage, and 60% at sowing time and 40% at grain filling stage in subplots). The results of this study revealed that a nitrogen dose of 225 kg ha-1 significantly augmented the plant height by 27% and above ground biomass (ABG) by 24% at the grain filling stage, and the leaf area was enhanced by 149% at the flowering stage under 60 + 40% ratios. Furthermore, the N225 kg ha-1 significantly prompted the photosynthetic rate by 47% at the jointing and flowering stages followed by grain filling stage compared to the control. The correlation analysis exhibited the positive relationship between nitrogen uptake and nitrogen content, chlorophyll, and dry biomass, revealing that NUE enhanced and ultimately increased the winter wheat yield. In conclusion, our results depicted that optimizing the nitrogen dose (N225 kg/ha-1) with a 60% + 40% ratio at jointing stage increased the grain yield and nitrogen utilization rate.

13.
BMC Plant Biol ; 22(1): 453, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36131250

RESUMO

BACKGROUND: Alhagi sparsifolia (Camelthorn) is a leguminous shrub species that dominates the Taklimakan desert's salty, hyperarid, and infertile landscapes in northwest China. Although this plant can colonize and spread in very saline soils, how it adapts to saline stress in the seedling stage remains unclear so a pot-based experiment was carried out to evaluate the effects of four different saline stress levels (0, 50, 150, and 300 mM) on the morphological and physio-biochemical responses in A. sparsifolia seedlings. RESULTS: Our results revealed that N-fixing A. sparsifolia has a variety of physio-biochemical anti-saline stress acclimations, including osmotic adjustments, enzymatic mechanisms, and the allocation of metabolic resources. Shoot-root growth and chlorophyll pigments significantly decreased under intermediate and high saline stress. Additionally, increasing levels of saline stress significantly increased Na+ but decreased K+ concentrations in roots and leaves, resulting in a decreased K+/Na+ ratio and leaves accumulated more Na + and K + ions than roots, highlighting their ability to increase cellular osmolarity, favouring water fluxes from soil to leaves. Salt-induced higher lipid peroxidation significantly triggered antioxidant enzymes, both for mass-scavenging (catalase) and cytosolic fine-regulation (superoxide dismutase and peroxidase) of H2O2. Nitrate reductase and glutamine synthetase/glutamate synthase also increased at low and intermediate saline stress levels but decreased under higher stress levels. Soluble proteins and proline rose at all salt levels, whereas soluble sugars increased only at low and medium stress. The results show that when under low-to-intermediate saline stress, seedlings invest more energy in osmotic adjustments but shift their investment towards antioxidant defense mechanisms under high levels of saline stress. CONCLUSIONS: Overall, our results suggest that A. sparsifolia seedlings tolerate low, intermediate, and high salt stress by promoting high antioxidant mechanisms, osmolytes accumulations, and the maintenance of mineral N assimilation. However, a gradual decline in growth with increasing salt levels could be attributed to the diversion of energy from growth to maintain salinity homeostasis and anti-stress oxidative mechanisms.


Assuntos
Antioxidantes , Fabaceae , Antioxidantes/metabolismo , Catalase/metabolismo , Clorofila/metabolismo , Fabaceae/metabolismo , Glutamato Sintase/metabolismo , Glutamato Sintase/farmacologia , Glutamato-Amônia Ligase/metabolismo , Peróxido de Hidrogênio/metabolismo , Íons/metabolismo , Nitrogênio/metabolismo , Prolina/metabolismo , Salinidade , Plântula/metabolismo , Solo , Açúcares/metabolismo , Superóxido Dismutase/metabolismo , Água/metabolismo
14.
Front Plant Sci ; 13: 906537, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35937330

RESUMO

Shading is one of the most chronic restrains which can lead to the lodging of intercropped plants. In order to increase the soybean stem lodging resistance, a 2-year field trial was conducted to evaluate the impact of different ratios and concentrations of NH4 +/NO3 - on the morpho-physiological and biochemical characteristics of soybean stem under shade conditions. The total 5 ratios of NH4 +/NO3 - were applied as follows: T0 = 0/0 (control), T1 = 0/100 (higher ratio), T2 = 25/75 (optimum), T3 = 50/50 (optimum), and T4 = 75/25 (higher ratio) as a nitrogen source. Our findings displayed that the T2 (25/75) and T3 (50/50) treatments alleviated the shading stress by improving the photosynthetic activity, biomass accumulation, carbohydrates contents, and lignin related enzymes (POD, CAD, and 4Cl) which led to improvement in stem lodging resistance. The correlation analysis (p ≤ 0.05, p ≤ 0.01) revealed the strong relationship between lodging resistance index and stem diameter, stem strength, lignin content, photosynthesis, and lignin related enzymes (POD, CAD, and 4CL) evidencing the strong contribution of lignin and its related enzymes in the improvement of lodging resistance of soybean stem under shade conditions. Collectively, we concluded that optimum NH4 +/NO3 - ratios (T2 and T3) can boost up the lodging resistance of soybean stem under shade stress.

15.
Antioxidants (Basel) ; 11(7)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35883801

RESUMO

Both light intensity and spectrum (280-800 nm) affect photosynthesis and, consequently, the formation of reactive oxygen species (ROS) during photosynthetic electron transport. ROS, together with antioxidants, determine the redox environment in tissues and cells, which in turn has a major role in the adjustment of metabolism to changes in environmental conditions. This process is very important since there are great spatial (latitude, altitude) and temporal (daily, seasonal) changes in light conditions which are accompanied by fluctuations in temperature, water supply, and biotic stresses. The blue and red spectral regimens are decisive in the regulation of metabolism because of the absorption maximums of chlorophylls and the sensitivity of photoreceptors. Based on recent publications, photoreceptor-controlled transcription factors such as ELONGATED HYPOCOTYL5 (HY5) and changes in the cellular redox environment may have a major role in the coordinated fine-tuning of metabolic processes during changes in light conditions. This review gives an overview of the current knowledge of the light-associated redox control of basic metabolic pathways (carbon, nitrogen, amino acid, sulphur, lipid, and nucleic acid metabolism), secondary metabolism (terpenoids, flavonoids, and alkaloids), and related molecular mechanisms. Light condition-related reprogramming of metabolism is the basis for proper growth and development of plants; therefore, its better understanding can contribute to more efficient crop production in the future.

16.
Life (Basel) ; 12(7)2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35888089

RESUMO

The application of organic manures was found to be beneficial, however, the integrated use of organic manures with chemical nitrogen fertilizers has proven more sustainable in increasing the photosynthetic attributes and grain yield of the winter-wheat crop. A multi-factor split-plot design was adopted, nitrogen and manure fertilizer treatments were set in the sub-plots, including nitrogen-gradient treatment of T1:0 kg N ha-1, T2:100 kg N ha-1, T3:200 kg N ha-1, and T4:300 kg N ha-1 (pure nitrogen -fertilizer application) The 25% reduction in nitrogen combined with the manure-fertilizer application includes T5:75 kg N ha-1 nitrogen and 25 kg N ha-1 manure, T6:150 kg N ha-1 nitrogen and 50 kg N ha-1 manure, and T7:225 kg N ha-1 nitrogen and 75 kg N ha-1 manure. The maximum results of the total chlorophyll content and photosynthetic rate were 5.73 mg/g FW and 68.13 m mol m-2 s-1, observed under T4 in Zhongmai 175, as compared to Jindong 22 at the heading stage. However, the maximum results of intercellular CO2 concentration were 1998.47 µmol mol-1, observed under T3 in Jindong 22, as compared to Zhongmai 175 at the tillering stage. The maximum results of LAI were 5.35 (cm2), observed under T7 in Jindong 22, as compared to Zhongmai 175 at the booting stage. However, the maximum results of Tr and Gs were 6.31 mmol H2O m-2 s-1 and 0.90 H2O mol m-2 s-1, respectively, observed under T7 in Zhongmai 175 as compared to Jindong 22 at the flowering stage. The results revealed that grain yield 8696.93 kg ha-1, grains spike-1 51.33 (g), and 1000-grain weight 39.27 (g) were significantly higher, under T3 in Zhongmai 175, as compared to Jindong 22. Moreover, the spike number plot-1 of 656.67 m2 was significantly higher in Jindong 22, as compared to Zhongmai 175. It was concluded from the study that the combined application of nitrogen and manure fertilizers in winter wheat is significant for enhancing seed at the jointing and flowering stages. For increased grain yield and higher economic return, Zhongmai 175 outperformed the other cultivars examined. This research brings awareness toward the nitrogen-fertilizer-management approach established for farmers' practice, which might be observed as an instruction to increase agricultural management for the winter-wheat-growth season.

17.
Front Plant Sci ; 13: 807048, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251081

RESUMO

This study was aimed to investigate the effects of organic carbon and silicon fertilizers on the lodging resistance, yield, and economic performance of rapeseed. Two cultivars, namely Jayou (lodging-resistant) and Chuannongyou (lodging-susceptible), were selected to evaluate the effects of various fertilizer treatments on rapeseed culm morphology, lignin accumulation, and their relationships with their lodging resistance indices. The results showed that both organic carbon and silicon fertilizer applications increased the plant height, basal stem diameter, internode plumpness, and bending strength of rapeseed in both the studied years. The bending strength was significantly and positively correlated with the lodging resistance index and lignin content. It was found that both organic carbon and silicon fertilizers had improved the activities of lignin biosynthesis enzymes (phenylalanine ammonia-lyase, 4-coumarate:CoA ligase, cinnamyl alcohol dehydrogenase, and peroxiredoxins) and their related genes to increase lignin accumulation in the culm, which ultimately improved the lodging resistance. At the same time, the thickness of the stem cortex, vascular bundle area, and xylem area was increased, and the stem strength was improved. The effect of silicon fertilizer was better than that of organic carbon fertilizer, but there was no significant difference with the mixed application of silicon fertilizer and organic carbon fertilizer. Similarly, silicon fertilizer increased the number of pods, significantly increased the yield, and improved the economic benefit, while organic carbon fertilizer had no significant effect on the yield. Therefore, we believe that organic carbon and silicon fertilizer can improve the lodging resistance of rape stems by improving the lignin accumulation and the mechanical tissue structure. Still, the effect of silicon fertilizer is the best. Considering the economic benefits, adding silicon fertilizer can obtain more net income than the mixed application of silicon fertilizer and organic carbon fertilizer.

18.
Front Plant Sci ; 13: 1081188, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36743556

RESUMO

Background: Increasing soil salinization has a detrimental effect on agricultural productivity.Therefore, strategies are needed to induce salinity-tolerance in crop species for sustainable foodproduction. γ-aminobutyric acid (GABA) plays a key role in regulating plant salinity stresstolerance. However, it remains largely unknown how mungbean plants (Vigna radiata L.) respondto exogenous GABA under salinity stress. Methods: Thus, we evaluated the effect of exogenous GABA (1.5 mM) on the growth and physiobiochemicalresponse mechanism of mungbean plants to saline stress (0-, 50-, and 100 mM [NaCland Na2SO4, at a 1:1 molar ratio]). Results: Increased saline stress adversely affected mungbean plants' growth and metabolism. Forinstance, leaf-stem-root biomass (34- and 56%, 31- and 53%, and 27- and 56% under 50- and 100mM, respectively]) and chlorophyll concentrations declined. The carotenoid level increased (10%)at 50 mM and remained unaffected at 100 mM. Hydrogen peroxide (H2O2), malondialdehyde(MDA), osmolytes (soluble sugars, soluble proteins, proline), total phenolic content, andenzymatic activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), peroxidase(POD), glutathione reductase (GTR), and polyphenol oxidation (PPO) were significantlyincreased. In leaves, salinity caused a significant increase in Na+ concentration but a decrease inK+ concentration, resulting in a low K+/Na+ concentration (51- and 71% under 50- and 100- mMstress). Additionally, nitrogen concentration and the activities of nitrate reductase (NR) andglutamine synthetase (GS) decreased significantly. The reduction in glutamate synthase (GOGAT)activity was only significant (65%) at 100 mM stress. Exogenous GABA decreased Na+, H2O2,and MDA concentrations but enhanced photosynthetic pigments, K+ and K+/Na+ ratio, Nmetabolism, osmolytes, and enzymatic antioxidant activities, thus reducing salinity-associatedstress damages, resulting in improved growth and biomass. Conclusion: Exogenous GABA may have improved the salinity tolerance of mungbean plants by maintaining their morpho-physiological responses and reducing the accumulation of harmfulsubstances under salinity. Future molecular studies can contribute to a better understanding of themolecular mechanisms by which GABA regulates mungbean salinity tolerance.

19.
Plants (Basel) ; 9(12)2020 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-33322139

RESUMO

Quinoa (Chenopodium quinoa Willd.) is a halophytic crop that shows resistance to multiple abiotic stresses, including salinity. In this study we investigated the salinity tolerance mechanisms of six contrasting quinoa cultivars belonging to the coastal region of Chile using agro-physiological parameters (plant height (PH), number of branches/plant (BN), number of panicles/plant (PN), panicle length (PL), biochemical traits (leaf C%, leaf N%, grain protein contents); harvest index and yield (seed yield and plant dry biomass (PDM) under three salinity levels (0, 10, and 20 d Sm-1 NaCl). The yield stability was evaluated through comparision of seed yield characteristics [(static environmental variance (S2) and dynamic Wricke's ecovalence (W2)]. Results showed that significant variations existed in agro-morphological and yield attributes. With increasing salinity levels, yield contributing parameters (number of panicles and panicle length) decreased. Salt stress reduced the leaf carbon and nitrogen contents. Genotypes Q21, and AMES13761 showed higher seed yield (2.30 t ha-1), more productivity and stability at various salinities as compared to the other genotypes. Salinity reduced seed yield to 44.48% and 60% at lower (10 dS m-1) and higher salinity (20 dS m-1), respectively. Grain protein content was highest in NSL106398 and lowest in Q29 when treated with saline water. Seed yield was positively correlated with PH, TB, HI, and C%. Significant and negative correlations were observed between N%, protein contents and seed yield. PH showed significant positive correlation with APL, HI, C% and C:N ratio. HI displayed positive correlations with C%, N% and protein content., All measured plant traits, except for C:N ratio, responded to salt in a genotype-specific way. Our results indicate that the genotypes (Q21 and AMES13761) proved their suitability under sandy desert soils of Dubai, UAE as they exhibited higher seed yield while NSL106398 showed an higher seed protein content. The present research highlights the need to preserve quinoa biodiversity for a better seedling establishment, survival and stable yield in the sandy desertic UAE environment.

20.
Plants (Basel) ; 9(11)2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33212960

RESUMO

Lodging is one of the most chronic restraints of the maize-soybean intercropping system, which causes a serious threat to agriculture development and sustainability. In the maize-soybean intercropping system, shade is a major causative agent that is triggered by the higher stem length of a maize plant. Many morphological and anatomical characteristics are involved in the lodging phenomenon, along with the chemical configuration of the stem. Due to maize shading, soybean stem evolves the shade avoidance response and resulting in the stem elongation that leads to severe lodging stress. However, the major agro-techniques that are required to explore the lodging stress in the maize-soybean intercropping system for sustainable agriculture have not been precisely elucidated yet. Therefore, the present review is tempted to compare the conceptual insights with preceding published researches and proposed the important techniques which could be applied to overcome the devastating effects of lodging. We further explored that, lodging stress management is dependent on multiple approaches such as agronomical, chemical and genetics which could be helpful to reduce the lodging threats in the maize-soybean intercropping system. Nonetheless, many queries needed to explicate the complex phenomenon of lodging. Henceforth, the agronomists, physiologists, molecular actors and breeders require further exploration to fix this challenging problem.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA