Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Ther ; 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38910327

RESUMO

Recent clinical studies of single gene replacement therapy for neuromuscular disorders have shown they can slow or stop disease progression, but such therapies have had little impact on reversing muscle disease that was already present. To reverse disease in patients with muscular dystrophy, new muscle mass and strength must be rebuilt at the same time that gene replacement prevents subsequent disease. Here, we show that treatment of FKRPP448L mice with a dual FKRP/FST gene therapy packaged into a single adeno-associated virus (AAV) vector can build muscle strength and mass that exceed levels found in wild-type mice and can induce normal ambulation endurance in a 1-h walk test. Dual FKRP/FST therapy also showed more even increases in muscle mass and amplified muscle expression of both genes relative to either single gene therapy alone. These data suggest that treatment with single AAV-bearing dual FKRP/FST gene therapies can overcome loss of ambulation by improving muscle strength at the same time it prevents subsequent muscle damage. This design platform could be used to create therapies for other forms of muscular dystrophy that may improve patient outcomes.

2.
J Neuromuscul Dis ; 10(5): 797-812, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37458043

RESUMO

BACKGROUND: GNE myopathy (GNEM) is a severe muscle disease caused by mutations in the UDP-GlcNAc-2-epimerase/ManNAc-6-kinase (GNE) gene, which encodes a bifunctional enzyme required for sialic acid (Sia) biosynthesis. OBJECTIVE: To develop assays to demonstrate the potency of AAV gene therapy vectors in making Sia and to define the dose required for replacement of endogenous mouse Gne gene expression with human GNE in skeletal muscles. METHODS: A MyoD-inducible Gne-deficient cell line, Lec3MyoDI, and a GNE-deficient human muscle cell line, were made and tested to define the potency of various AAV vectors to increase binding of Sia-specific lectins, including MAA and SNA. qPCR and qRT-PCR methods were used to quantify AAV biodistribution and GNE gene expression after intravenous delivery of AAV vectors designed with different promoters in wild-type mice. RESULTS: Lec3 cells showed a strong deficit in MAA binding, while GNE-/-MB135 cells did not. Overexpressing GNE in Lec3 and Lec3MyoDI cells by AAV infection stimulated MAA binding in a dose-dependent manner. Use of a constitutive promoter, CMV, showed higher induction of MAA binding than use of muscle-specific promoters (MCK, MHCK7). rAAVrh74.CMV.GNE stimulated human GNE expression in muscles at levels equivalent to endogenous mouse Gne at a dose of 1×1013vg/kg, while AAVs with muscle-specific promoters required higher doses. AAV biodistribution in skeletal muscles trended higher when CMV was used as the promoter, and this correlated with increased sialylation of its viral capsid. CONCLUSIONS: Lec3 and Lec3MyoDI cells work well to assay the potency of AAV vectors in making Sia. Systemic delivery of rAAVrh74.CMV.GNE can deliver GNE gene replacement to skeletal muscles at doses that do not overwhelm non-muscle tissues, suggesting that AAV vectors that drive constitutive organ expression could be used to treat GNEM.


Assuntos
Infecções por Citomegalovirus , Músculo Esquelético , Humanos , Camundongos , Animais , Distribuição Tecidual , Músculo Esquelético/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Terapia Genética , Infecções por Citomegalovirus/metabolismo
3.
Mol Ther Methods Clin Dev ; 26: 413-426, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36092360

RESUMO

Lysosomal acid lipase deficiency (LAL-D) presents as one of two rare autosomal recessive diseases: Wolman disease (WD), a severe disorder presenting in infancy characterized by absent or very low LAL activity, and cholesteryl ester storage disease (CESD), a less severe, later onset disease form. Recent clinical studies have shown efficacy of enzyme replacement therapy for both forms of LAL-D; however, no gene therapy approach has yet been developed for clinical use. Here, we show that rscAAVrh74.miniCMV.LIPA gene therapy can significantly improve disease symptoms in the Lipa -/- mouse model of LAL-D. Treatment dramatically lowered hepatosplenomegaly, liver and spleen triglyceride and cholesterol levels, and serum expression of markers of liver damage. Measures of liver inflammation and fibrosis were also reduced. Treatment of young adult mice was more effective than treatment of neonates, and enzyme activity was elevated in serum, consistent with possible bystander effects. These results demonstrate that adeno associated virus (AAV)-mediated LIPA gene-replacement therapy may be a viable option to treat patients with LAL-D, particularly patients with CESD.

4.
Am J Pathol ; 191(8): 1474-1486, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34294193

RESUMO

Humans cannot synthesize the common mammalian sialic acid N-glycolylneuraminic acid (Neu5Gc) because of an inactivating deletion in the cytidine-5'-monophospho-(CMP)-N-acetylneuraminic acid hydroxylase (CMAH) gene responsible for its synthesis. Human Neu5Gc deficiency can lead to development of anti-Neu5Gc serum antibodies, the levels of which can be affected by Neu5Gc-containing diets and by disease. Metabolic incorporation of dietary Neu5Gc into human tissues in the face of circulating antibodies against Neu5Gc-bearing glycans is thought to exacerbate inflammation-driven diseases like cancer and atherosclerosis. Probing of sera with sialoglycan arrays indicated that patients with Duchenne muscular dystrophy (DMD) had a threefold increase in overall anti-Neu5Gc antibody titer compared with age-matched controls. These antibodies recognized a broad spectrum of Neu5Gc-containing glycans. Human-like inactivation of the Cmah gene in mice is known to modulate severity in a variety of mouse models of human disease, including the X chromosome-linked muscular dystrophy (mdx) model for DMD. Cmah-/-mdx mice can be induced to develop anti-Neu5Gc-glycan antibodies as humans do. The presence of anti-Neu5Gc antibodies, in concert with induced Neu5Gc expression, correlated with increased severity of disease pathology in Cmah-/-mdx mice, including increased muscle fibrosis, expression of inflammatory markers in the heart, and decreased survival. These studies suggest that patients with DMD who harbor anti-Neu5Gc serum antibodies might exacerbate disease severity when they ingest Neu5Gc-rich foods, like red meats.


Assuntos
Autoanticorpos/sangue , Distrofia Muscular de Duchenne/imunologia , Distrofia Muscular de Duchenne/patologia , Ácidos Neuramínicos/sangue , Ácidos Neuramínicos/imunologia , Animais , Autoanticorpos/imunologia , Autoantígenos/imunologia , Criança , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Endogâmicos mdx , Camundongos Knockout , Distrofia Muscular de Duchenne/sangue
5.
PLoS One ; 16(3): e0248721, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33770101

RESUMO

We have examined the effects of intravenous (IV) delivery of rAAVrh74.MHCK7.GALGT2 in the golden retriever muscular dystrophy (GRMD) model of Duchenne Muscular Dystrophy (DMD). After baseline testing, GRMD dogs were treated at 3 months of age and reassessed at 6 months. This 3-6 month age range is a period of rapid disease progression, thus offering a relatively short window to establish treatment efficacy. Measures analyzed included muscle AAV transduction, GALGT2 transgene expression, GALGT2-induced glycosylation, muscle pathology, and muscle function. A total of five dogs were treated, 4 at 2x1014vg/kg and one at 6x1014vgkg. The 2x1014vg/kg dose led to transduction of regions of the heart with 1-3 vector genomes (vg) per nucleus, while most skeletal muscles were transduced with 0.25-0.5vg/nucleus. GALGT2-induced glycosylation paralleled levels of myofiber vg transduction, with about 90% of cardiomyocytes having increased glycosylation versus 20-35% of all myofibers across the skeletal muscles tested. Conclusions from phenotypic testing were limited by the small number of dogs. Treated dogs had less pronounced fibrosis and overall lesion severity when compared to control groups, but surprisingly no significant changes in limb muscle function measures. GALGT2-treated skeletal muscle and heart had elevated levels of utrophin protein expression and GALGT2-induced expression of glycosylated α dystroglycan, providing further evidence of a treatment effect. Serum chemistry, hematology, and cardiac function measures were largely unchanged by treatment. Cumulatively, these data show that short-term intravenous treatment of GRMD dogs with rAAVrh74.MHCK7.GALGT2 at high doses can induce muscle glycosylation and utrophin expression and may be safe over a short 3-month interval, but that such treatments had only modest effects on muscle pathology and did not significantly improve muscle strength.


Assuntos
Doenças do Cão/terapia , Distrofina/genética , Terapia Genética , Glicosiltransferases/farmacologia , Distrofias Musculares/terapia , Distrofia Muscular de Duchenne/terapia , Animais , Modelos Animais de Doenças , Doenças do Cão/genética , Doenças do Cão/patologia , Cães , Distroglicanas/biossíntese , Distroglicanas/genética , Distrofina/biossíntese , Expressão Gênica/efeitos dos fármacos , Glicosilação/efeitos dos fármacos , Glicosiltransferases/genética , Humanos , Força Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Distrofias Musculares/genética , Distrofias Musculares/patologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Utrofina/genética
6.
Mol Ther Methods Clin Dev ; 15: 305-319, 2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31890730

RESUMO

rAAVrh74.MCK.GALGT2 is a surrogate gene therapy that inhibits muscular dystrophy in multiple animal models. Here, we report on a dose-response study of functional muscle GALGT2 expression as well as toxicity and biodistribution studies after systemic intravenous (i.v.) delivery of rAAVrh74.MCK.GALGT2. A dose of 4.3 × 1014vg/kg (measured with linear DNA standard) resulted in GALGT2-induced glycosylation in the majority of skeletal myofibers throughout the body and in almost all cardiomyocytes, while several lower doses also showed significant muscle glycosylation. No adverse clinical signs or treatment-dependent changes in tissue or organ pathology were noted at 1 or 3 months post-treatment. Blood cell and serum enzyme chemistry measures in treated mice were all within the normal range except for alkaline phosphatase (ALP) activity, which was elevated in serum but not in tissues. Some anti-rAAVrh74 capsid T cell responses were noted at 4 weeks post-treatment, but all such responses were not present at 12 weeks. Using intramuscular delivery, GALGT2-induced muscle glycosylation was increased in Cmah-deficient mice, which have a humanized sialoglycome, relative to wild-type mice, suggesting that use of mice may underestimate GALGT2 activity in human muscle. These data demonstrate safety and high transduction of muscles throughout the body plan with i.v. delivery of rAAVrh74.MCK.GALGT2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA