Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Curr Res Microb Sci ; 6: 100235, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660337

RESUMO

The study focused on isolating indigenous Qatari lactic acid bacteria (LAB) from various challenged date palm tree leaf silages to construct a comprehensive strain collection, useful to study the diversity of these strains following their adaptation to the uncommon silage. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) was employed for strain identification and differentiation. The diversity of LAB populations and strains was assessed through principal component analysis (PCA) and dendrogram analyses. A total of 88 LAB isolates were obtained from silages of fresh palm leaves, silage of mixed leaves and dairy feed, along with fresh palm tree leaves, and dairy feed, adapted to local harsh environments. These isolates were categorized according to the new classification of 2020, belonging to genera of Pediococcus, Lactiplantibacillus plantarum, Lacticaseibacillus paracasei, Companilactobacillus farciminis, Limosilactobacillus oris, Limosilactobacillus vaginalis, Lactiplantibacillus pentosus and Lactobacillus johnsonii. Pediococcus was the most prevalent genus, falling mostly within the species Pediococcus lolii. MALDI-TOF MS protein profiles, PCA, and dendrogram analyses successfully grouped the LAB isolates into five distinctive clusters based on the protein's similarities. The high diversity of the indigenous LAB in spontaneous palm leaf silages demonstrated their adaptation and mutualistic interactions, forming robust consortia that ensure the quality of the silage. The straightforward, quick, and accurate identification of LAB in this silage using MALDI-TOF MS presents a valuable approach for formulating LAB consortia for silaging harsh agricultural by-products.

2.
Environ Res ; 246: 118096, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38171470

RESUMO

With the growing population, the accumulation of waste materials (WMs) (industrial/household waste) in the environment incessantly increases, affecting human health. Additionally, it affects the climate and ecosystem of terrestrial and water habitats, thereby needing effective management technology to control environmental pollution. In this aspect, managing these WMs to develop products that mitigate the associated issues is necessary. Researchers continue to focus on WMs management by adopting a circular economy. These WMs convert into useful/value-added products such as polymers and nanomaterials (NMs), especially carbon nanomaterials (CNs). The conversion/transformation of waste material into useful products is one of the best solutions for managing waste. Waste-derived CNs (WD-CNs) have established boundless promises for numerous applications like environmental remediation, energy, catalysts, sensors, and biomedical applications. This review paper discusses the several sources of waste material (agricultural, plastic, industrial, biomass, and other) transforming into WD-CNs, such as carbon nanotubes (CNTs), biochar, graphene, carbon nanofibers (CNFs), carbon dots, etc., are extensively elaborated and their application. The impact of metal doping within the WD-CNs is briefly discussed, along with their applicability to end applications.


Assuntos
Nanofibras , Nanoestruturas , Nanotubos de Carbono , Humanos , Ecossistema , Resíduos Industriais
3.
Biotechnol Rep (Amst) ; 39: e00811, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37663542

RESUMO

The involvement of microorganisms in carbonate minerals and modern dolomite formation in evaporitic environments occupied with microbial mats (i.e., sabkha) and in mangrove forests is evidenced, while its potential diversity requires further elucidation. Microorganisms can create supersaturated microenvironments facilitating the formation of various carbonate minerals through specific metabolic pathways. This is particularly important in arid environments, where deposition and sedimentary structures can occur. This study investigated the biodiversity of halophilic, heterotrophic, and aerobic mineral-forming bacteria in mangrove forests and living and decaying mats of Qatari sabkha. The diversity study was performed at the protein level using MALDI-TOF mass spectrometry protein profiles combined with principal component analysis (PCA), which revealed a high diversity of isolated strains at the taxonomy and protein profile levels. The diversity of the minerals formed in pure cultures was evidenced by SEM/EDS and XRD analysis. Different types of carbonate minerals (calcium carbonate, magnesium carbonates, and high-magnesium calcites) were formed in pure cultures of the studied strains, which might explain their occurrence in the bulk composition of the sediments from where the strains were isolated. These results illuminate the diversity of biological mineral-formation processes in the extreme environments of Qatari sabkhas and mangroves, explaining the high diversity of minerals in these environments.

4.
Int J Exp Pathol ; 104(6): 283-291, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37750190

RESUMO

Histomorphometric lung density measurements were used to evaluate the effects of Immulina on mouse pneumonia. Mice were intra-nasally exposed to H1N1 influenza virus at a dose of 5 × 104 PFU/50 µL/mouse. Lung density was measured using the NIH ImageJ software program. Density values were compared to semiquantitative pneumonia severity scores. Lung photomicrographs were evaluated at 25-×, 40-× and 400-× magnification. The study included viral inoculated controls (IC) and non-inoculated controls (NC) and mice either treated or not treated with Immulina. Three doses of Immulina were included (25, 50 or 100 mg/kg) and administered using 3 protocols: prophylactic treatment (P), prodromal treatment (PD) and therapeutic treatment (TH) (note that in most of the evaluations of the data for the three treatment protocols were combined). Groups of mice were evaluated on days 3, 5, 7, 10 and 15 following exposure. The occurrence of "digital pneumonia" (DP) was defined as a density measurement above the 95% confidence limit of the corresponding NC values. A significant reduction in the occurrence of DP with Immulina treatment at the higher doses compared to IC was seen as early as day 3 and persisted up to day 15. There were also statistically significant dose-variable reductions in lung density in response to Immulina. The study suggests early administration of Immulina (P or PD protocols) may enhance resistance against influenza-induced viral pneumonia. A moderate correlation between pneumonia severity scores and lung density was observed for the 25-× and 40-× images (R = 0.56 and 0.53 respectively), and a strong correlation (R = 0.68) for 400-× images.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Pneumonia , Animais , Camundongos , Humanos , Pneumonia/tratamento farmacológico , Pulmão
5.
Environ Res ; 233: 116439, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37331551

RESUMO

Tetracycline (TC) antibiotic that is effective against wide-range micro-organisms, thereby used to control bacterial infection. The partial metabolism of TC antibiotics in humans and animals leads to the contamination of TC in the environments like water bodies. Thus, requirements to treat/remove/degrade TC antibiotics from the water bodies to control environmental pollution. In this context, this study focuses on fabricating PVP-MXene-PET (PMP) based photo-responsive materials to degrade TC antibiotics from the water. Initially, MXene (Ti2CTx) was synthesized using a simple etching process from the MAX phase (Ti3AlC2). The synthesized MXene was encapsulated using PVP and cast onto the surface of PET to fabricate PMP-based photo-responsive materials. The rough surface and micron/nano-sized pores within the PMP-based photo-responsive materials might be improved the photo-degradation of TC antibiotics. The synthesized PMP-based photo-responsive materials were tested against the photo-degradation of TC antibiotics. The band gap value of the MXene and PMP-based photo-responsive materials was calculated to be ∼1.23 and 1.67 eV. Incorporating PVP within the MXene increased the band gap value, which might be beneficial for the photo-degradation of TC, as the minimum band gap value should be ∼1.23 eV or more for photocatalytic application. The highest photo-degradation of ∼83% was achieved using PMP-based photo-degradation at 0.1 mg/L of TC. Furthermore, ∼99.71% of photo-degradation of TC antibiotics was accomplished at pH ∼10. Therefore, the fabricated PMP-based photo-responsive materials might be next-generation devices/materials that efficiently degrade TC antibiotics from the water.


Assuntos
Antibacterianos , Tetraciclina , Humanos , Catálise , Tetraciclina/química , Antibacterianos/química , Água , Tomografia por Emissão de Pósitrons
6.
Sci Total Environ ; 895: 164854, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37353014

RESUMO

Water and wastewater are contaminated with various types of trace elements that are released from industrial activities. Their presence, at concentrations above the permissible limit, will cause severe negative impacts on human health and the environment. Due to their cost-effectiveness, simple design, high efficiency, and selectivity, adsorption, and adsorptive filtration are techniques that have received lots of attention as compared to other water treatment techniques. Adsorption isotherms and kinetic studies help to understand the mechanisms of adsorption and adsorption rates, which can be used to develop and optimize different adsorbents. This state-of-the-art review provides and combines the advancements in different conventional and advanced adsorbents, biosorbents, and adsorptive membranes for the removal of trace elements from water streams. Herein, this review discusses the sources of different trace elements and their impact on human health. The review also covers the adsorption technique with a focus on various advanced adsorbents, their adsorption capacities, and adsorption isotherm modeling in detail. In addition, biosorption is critically discussed together with its mechanisms and biosorption isotherms. In the end, the application of various advanced adsorptive membranes is discussed and their comparison with adsorbents and biosorbents is systematically presented.

7.
J Med Food ; 26(5): 307-318, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37186895

RESUMO

The berries of Juniperus communis have been traditionally used for therapeutic purposes. They have been reported to possess various pharmacological effects such as anti-inflammatory, hypoglycemic and hypolipidemic activities. In this study, a methanolic extract of J. communis berries (JB) was evaluated for its effects on peroxisome proliferator-activated receptors alpha and gamma (PPARα and PPARγ), liver X receptor (LXR), glucose uptake and lipid accumulation using various cellular systems. At a concentration of 25 µg/mL, JB caused 3.77-fold activation of PPARα, 10.90-fold activation of PPARγ, and 4.43-fold activation of LXR in hepatic cells. JB inhibited (11%) the adipogenic effect induced by rosiglitazone in adipocytes and increased glucose uptake (90%) in muscle cells. In high-fat diet (HFD) fed mice, JB at a dose of 25 mg/kg body weight exhibited a 21% decrease in body weight. Fasting glucose levels in mice treated with 12.5 mg/kg of JB were significantly decreased (39%) indicating its efficacy in regulating hyperglycemia and obesity induced by HFD thus ameliorating the symptoms of type 2 diabetes. A series of energy metabolic genes, including Sirt1 (2.00-fold) and RAF1 (2.04-fold), were upregulated by JB, while rosiglitazone regulated the hepatic PPARγ only. Phytochemical analysis of JB indicated presence of a number of flavonoids and biflavonoids which seem to be responsible for the observed activity. It was concluded that JB acted as a multiple agonist of PPARα, PPARγ and LXR without the undesired effect of adipogenesis and exhibited the property of enhancing glucose uptake. The regulation of PPARα, PPARγ and LXR seems to be through Sirt1 and RAF1. In vivo results confirmed the antidiabetic and antiobesity potential of JB and indicated its utility in metabolic disorder and type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Juniperus , Animais , Camundongos , Peso Corporal , Diabetes Mellitus Tipo 2/tratamento farmacológico , Frutas/metabolismo , Glucose/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Juniperus/metabolismo , Receptores X do Fígado/genética , Receptores X do Fígado/uso terapêutico , Camundongos Endogâmicos C57BL , Obesidade/tratamento farmacológico , Obesidade/genética , PPAR alfa/genética , PPAR alfa/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Rosiglitazona/uso terapêutico , Sirtuína 1
8.
Cureus ; 15(2): e35010, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36938182

RESUMO

Since the declaration of a global pandemic by the World Health Organization on March 11, 2020, coronavirus disease 2019 (COVID-19) has impacted millions worldwide. This complex disease process has been primarily associated with respiratory illness. As we continue to learn about COVID-19, there appears to be a growing spectrum of non-pulmonary manifestations. A major topic of interest is hepatic dysfunction related to COVID-19, specifically the growing number of cases involving acute liver failure in the setting of COVID-19. Here, we present a rare case of a patient with COVID-19 antibodies, negative inpatient COVID-19 testing, jaundice, and elusive multiorgan dysfunction.

9.
Antibiotics (Basel) ; 12(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36830308

RESUMO

Bacterial contamination in water bodies is a severe scourge that affects human health and causes mortality and morbidity. Researchers continue to develop next-generation materials for controlling bacterial infections from water. Photo-antibacterial activity continues to gain the interest of researchers due to its adequate, rapid, and antibiotic-free process. Photo-antibacterial materials do not have any side effects and have a minimal chance of developing bacterial resistance due to their rapid efficacy. Photocatalytic two-dimensional nanomaterials (2D-NMs) have great potential for the control of bacterial infection due to their exceptional properties, such as high surface area, tunable band gap, specific structure, and tunable surface functional groups. Moreover, the optical and electric properties of 2D-NMs might be tuned by creating heterojunctions or by the doping of metals/carbon/polymers, subsequently enhancing their photo-antibacterial ability. This review article focuses on the synthesis of 2D-NM-based hybrid materials, the effect of dopants in 2D-NMs, and their photo-antibacterial application. We also discuss how we could improve photo-antibacterials by using different strategies and the role of artificial intelligence (AI) in the photocatalyst and in the degradation of pollutants. Finally, we discuss was of improving the photo-antibacterial activity of 2D-NMs, the toxicity mechanism, and their challenges.

10.
Drug Deliv Transl Res ; 13(1): 189-221, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36074253

RESUMO

The global prevalence of cancer is increasing, necessitating new additions to traditional treatments and diagnoses to address shortcomings such as ineffectiveness, complications, and high cost. In this context, nano and microparticulate carriers stand out due to their unique properties such as controlled release, higher bioavailability, and lower toxicity. Despite their popularity, they face several challenges including rapid liver uptake, low chemical stability in blood circulation, immunogenicity concerns, and acute adverse effects. Cell-mediated delivery systems are important topics to research because of their biocompatibility, biodegradability, prolonged delivery, high loading capacity, and targeted drug delivery capabilities. To date, a variety of cells including blood, immune, cancer, and stem cells, sperm, and bacteria have been combined with nanoparticles to develop efficient targeted cancer delivery or diagnosis systems. The review paper aimed to provide an overview of the potential applications of cell-based delivery systems in cancer therapy and diagnosis.


Assuntos
Neoplasias , Sêmen , Masculino , Humanos , Nanotecnologia , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico
11.
Polymers (Basel) ; 14(18)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36145856

RESUMO

Reverse osmosis (RO) is affected by multiple types of fouling such as biofouling, scaling, and organic fouling. Therefore, a multi-functional membrane capable of reducing more than one type of fouling is a need of the hour. The polyacrylic acid and graphene oxide (PAA-GO) nanocomposite functionalization of the RO membrane has shown its effectiveness against both mineral scaling and biofouling. In this research, the polyacrylic acid concentration and irradiation times were optimized for the PAA-GO-coated RO membrane using the response surface methodology (RSM) approach. The effect of these parameters on pure water permeability and salt rejection was investigated. The models were developed through the design of the experiment (DoE), which were further validated through the analysis of variance (ANOVA). The optimum conditions were found to be: 11.41 mg·L-1 (acrylic acid concentration) and 28.08 min (UV activation times) with the predicted results of 2.12 LMH·bar-1 and 98.5% NaCl rejection. The optimized membrane was prepared as per the model conditions, which showed an increase in both pure water permeability and salt rejection as compared to the control. The improvement in membrane surface smoothness and hydrophilicity for the optimized membrane also helped to inhibit mineral scaling by 98%.

12.
Lab Med ; 53(6): 552-560, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-35770793

RESUMO

OBJECTIVE: We evaluated the relevant published studies exploring the association between chemerin concentrations and acute coronary syndromes (ACSs). METHODS: A systematic search was performed in October 2021 using PubMed, Scopus, Embase, and Cochrane Library. We included full articles and assessed their quality using the Newcastle-Ottawa score. RESULTS: We found 6 studies in the systematic review and 5 of these were included in our meta-analysis. Mean difference (MD) of 41.69 ng/mL (95% CI, 10.07-73.30), 132.14 ng/mL (95% CI, -102.12-366.40), and 62.10 ng/mL (95% CI, 10.31-113.89) in chemerin levels was seen in ACS patients vs control subjects, ACS patients vs stable angina pectoris patients (SAP), and type 2 diabetes mellitus (T2DM) ACS patients vs nondiabetic ACS patients, respectively. CONCLUSION: Chemerin levels were significantly elevated in patients with ACS compared to controls, as well as in T2DM-ACS patients compared to nondiabetic ACS patients. However, no significant MD in chemerin levels was observed between SAP and ACS patients.


Assuntos
Síndrome Coronariana Aguda , Angina Estável , Diabetes Mellitus Tipo 2 , Humanos
13.
Environ Sci Pollut Res Int ; 29(35): 53873-53883, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35292897

RESUMO

The present study reports on the synthesis of Cu-bismuth oxide (CuBi2O4)-based nanorods by using a simple co-precipitation method for the photocatalytic degradation of caffeic acid (CA). The incorporation of Cu metal ions during the synthesis of CuBi2O4 nanorods might be advantageous to avoid the aggregation and control the leach out of metal ions. The calculated bandgap values of ~ 1.04, 1.02, and 0.94 eV were observed for CuBi2O4 with different amounts of Cu 1.0, 0.50, and 0.25 g, respectively. Varying the quantity of Cu metal ions easily tuned the bandgap value within the CuBi2O4-based nanorods. However, a further decrease in the bandgap value increased the recombination rate, and the less photocatalyst performance was observed. The CA degradation could be explained based on the species distribution. The CA pKa was mainly located between pKa1 and pKa2 of 4.43 and 8.6, respectively. The Cu within the CuBi2O4-based nanorods changed the electronic properties and the antibacterial ability. Therefore, the synthesized CuBi2O4-based nanorod cluster might be a promising material for the photocatalytic degradation of CA.


Assuntos
Cobre , Nanotubos , Ácidos Cafeicos , Catálise
14.
J Environ Manage ; 305: 114359, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34959061

RESUMO

Bacteria play a variety of roles in the environment. They maintain the balance in the ecosystem and provide different ecosystem services such as in biogeochemical cycling of nutrients, biodegradation of toxic pollutants, and others. Therefore, isolation and identification of different environmental bacteria are important to most environmental research. Due to the high cost and time associated with the conventional molecular techniques, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has gained considerable attention for routine identification of bacteria. This review aims to provide an overview of the application of MALDI-TOF MS in various environmental studies through bibliometric analysis and literature review. The bibliometric analysis helped to understand the time-variable application of MALDI-TOF MS in various environmental studies. The categorical literature review covers various environmental studies comprising areas like ecology, food microbiology, environmental biotechnology, agriculture, and plant sciences, which show the application of the technique for identification and characterization of pollutant-degrading, plant-associated, disease-causing, soil-beneficial, and other environmental bacteria. Further research should focus on bridging the gap between the phylogenetic identity of bacteria and their specific environmental functions or metabolic traits that can help in rapid advancements in environmental research, thereby, improving time and cost savings.


Assuntos
Bactérias , Ecossistema , Bactérias/genética , Filogenia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
15.
Cureus ; 13(9): e18213, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34703704

RESUMO

Biologic agents are increasingly used for many autoimmune and inflammatory conditions, as they are both steroid sparing and can potentially induce and maintain remission. Notably tumor necrosis factor (TNF) alpha antagonists are particularly useful in inflammatory bowel disease (IBD) such as Crohn's disease (CD) and ulcerative colitis (UC). Infliximab is a chimeric monoclonal antibody that targets TNF alpha (cytokine involved in modulation of inflammatory responses) and neutralizes its effects. As infliximab is a generic TNF alpha inhibitor, it can cause non-specific immune mediated side effects in addition to its intended therapeutic effect on the target organ (i.e., the gut in IBD). We present a case of a gentleman developing a rare dermatological side effect of an acneiform reaction, after the use of infliximab for his CD. Monitoring anti-TNF alpha antibodies may help identify patients at a higher risk of developing adverse reactions. In addition, gut specific biologic agents (vedolizumab) may be the next preferable step in individuals with IBD who demonstrate reactions and/or intolerance to non-specific TNF alpha inhibitors.

16.
J Photochem Photobiol B ; 219: 112204, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33957469

RESUMO

The present work describes the synthesis of polyvinylpyrrolidone (PVP) assisted Fe-BiOI based Fe/Bi-povidone­iodine (Fe/Bi-P-I) micro-flowers based composite and its photocatalytic and antibacterial applications. The Fe/Bi-P-I micro-flowers-based composite material was synthesized using a simple co-precipitation method. The prepared Fe/Bi-P-I micro-flowers-based composite materials were characterized using various characterization techniques and tested against photocatalytic degradation of rhodamine B (RhB) dye and antibacterial analysis. The PVP or povidone­iodine provides more exposure of reactive sites and oxygen vacancies, which leads to a high separation rate of photoinduced charge carriers, and migration, thereby 100% of photodegradation efficiency at 1 mg/L initial concentration of RhB dye towards the synthesized P-Fe-BiOI based micro-flowers composite. Interestingly, Povidone-Iodine in Fe/Bi-P-I micro-flowers-based composite might be advantageous for antimicrobial activity against both gram-negative (E. coli), and gram-positive (S. aureus) bacterial strains. Therefore, the prepared Fe/Bi-P-I micro-flowers-based composite improved both photocatalytic degradation of organic pollutants as well as high antimicrobial activity. The method of synthesizing the Bi/Fe-P-I micro flower composite in the present study is novel, facile, and economically viable.


Assuntos
Antibacterianos/química , Bismuto/química , Ferro/química , Luz , Fotólise/efeitos da radiação , Povidona-Iodo/química , Antibacterianos/farmacologia , Catálise , Escherichia coli/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Rodaminas/química , Staphylococcus aureus/efeitos dos fármacos
17.
Chemosphere ; 280: 130803, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33975241

RESUMO

Tetracycline (TC) is one of the most commonly used broad-spectrum antibiotics to treat the bacterial infection. TC antibiotics enter into the environment because of partial metabolism in the humans and animals, thereby increasing the environmental toxicity. Therefore, it is highly needed to treat TC antibiotics from the water system. In this aspect, the present work focus on the synthesis of Fe and Zn (bimetal) incorporated with different concentrations into the bismuth-oxy-iodide (Fe/Zn-BiOI) based photocatalyst materials. The synthesized Fe/Zn-BiOI was tested against photocatalytic degradation of TC antibiotics and bacteria. The band gap value of the synthesized Fe/Zn-BiOI was calculated ~2.19 eV. The incorporation of the Fe and Zn metals within the BiOI aided advantages that increased the reactive sites, oxygen defects, photon adsorption, production of hydroxyl radicals, and decrease the recombination rate, thereby high photo-degradation ability. The maximum degradation of ~83% was observed using Fe/Zn-BiOI-1-1 at 10 mg/L of TC antibiotics concentration. Moreover, ~98% of degradation was observed at pH~10 of the TC antibiotics. The photo-activity against bacteria of the Fe/Zn-BiOI was also determined. The data suggested that the synthesized Fe/Zn-BiOI based photocatalyst materials effectively inhibited the bacterial strains. Therefore, Fe/Zn-BiOI based photocatalyst materials might be promising materials that effectively degrade TC antibiotics as well as bacteria.


Assuntos
Luz , Tetraciclina , Animais , Antibacterianos , Bactérias , Catálise , Humanos , Fotólise , Zinco
18.
Sci Rep ; 11(1): 7708, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33833269

RESUMO

The continuously increased existence of contaminants such as chemical and biological mainly dye, bacteria, and heavy metals ions (HMI) in water bodies has increased environmental concern due to their hostile effects on living things. Therefore, there is necessity to be developed newer materials that skirmishes such environmental menace. The present works focus on the synthesis of a novel three-dimensional (3D) polymer-metal-carbon (3D-PMC) framework for the exclusion of contaminants (chemical and biological) from water bodies. Initially, polyurethane (PU) foam was treated with nitric acid and used as a framework for the development of 3D-PMC materials. The copper nanosheet (Cu-NS) was deposited onto the functionalized PU foam to produce Cu-NS-PU material. The mechanically exfoliated graphene was mixed with chitosan to produce a graphene-chitosan homogenous suspension. The produce homogenous suspension was deposited Cu-NS-PU for the development of the 3D-PMC framework. The prepared 3D-PMC framework was characterized by scanning electron microscopy (SEM), Energy Dispersive X-Ray Analysis (EDX), Fourier-transform infrared spectroscopy (FT-IR), and X-rays diffraction (XRD) analysis. The prepared 3D-PMC framework was subjected to various adsorption parameters to assess the sorption ability of the material. The prepared 3D-PMC framework was effectively used for the removal of chromium (Cr) metal ions and Congo-red (CR) dye from the water system. The synthesis of the 3D-PMC framework is simple, novel, cost-effective, and economically viable. Therefore, the prepared 3D-PMC framework has the potential to be used as a filter assembly in water treatment technologies.

19.
ACS Omega ; 6(2): 1575-1583, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33490817

RESUMO

The present study describes the strategic doping of Fe metal ions into a BiOI microstructure using ex situ and in situ processes to synthesize a Fe-BiOI microstructure and their effect on photocatalytic degradation of tetracycline (TC). The data suggested that in situ Fe-BiOI (Fe-BiOI-In) has superior performance compared to ex situ Fe-BiOI (Fe-BiOI-Ex) due to the uniform dispersion of Fe within the Fe-BiOI material. Calculated bandgaps ∼1.8, ∼1.5, and 2.4 eV were observed for BiOI (without Fe), Fe-BiOI-In, and Fe-BiOI-Ex, respectively. Interestingly, Fe incorporation within BiOI might decrease the bandgap in Fe-BiOI-In due to the uniform distribution of metal ions, whereas increasing the bandgap in Fe-BiOI-Ex attributed to nonuniform distribution or agglomeration of metal ions. The uniform dispersion of Fe within Fe-BiOI modulates electronic properties as well as increases the exposure of Fe ions with TC, thereby higher degradation efficiency of TC. The in situ Fe-BiOI material shows 67 and 100% degradation of TC at 10 and 1 mg/L, respectively. The TC degradation was also found to be pH-dependent; when increasing the pH value up to 10, 94% degradation was achieved at 10 mg/L within 60 min of solar irradiation. The analysis was also performed over BiOI, which proves that Fe has a profound effect on TC degradation as Fe(II) tends to trigger oxidation-reduction by utilizing the chelate formation tendency of TC. Therefore, the prepared Fe-BiOI-In has the potential ability to degrade pharmaceutical compounds, especially, TC from wastewater.

20.
J Diet Suppl ; 18(1): 1-16, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-31603036

RESUMO

Raspberry ketone (RK)-an aromatic compound found mostly in red raspberries (Rubus idaeus) is widely used as an over the counter product for weight loss. The present study was conducted to determine adverse effects associated with RK in obese and health-compromised obese mice. Two sets of experiments were conducted on normal obese and health-compromised obese mice treated with RK for a duration of 10 days. Obese conditions were induced by feeding mice a high fat diet for 10 weeks, while the health compromised obese mouse model was developed by a single intraperitoneal injection of a nontoxic dose of lipopolysaccharide (LPS) (6 mg/kg) to obese mice. Results showed that RK (165, 330, and 500 mg/kg) under obese as well as health-compromised condition retarded the gain in body weights as compared to the control groups. RK at doses 330 and 500 mg/kg resulted in 67.6 and 50% mortality, respectively in normal obese mice and 70% mortality was observed in health-compromised obese mice treated with RK at 500 mg/kg. At higher doses deaths were observed earlier than those given lower doses of RK. Significant elevations in blood alanine transaminase (ALT) were also observed with RK treatment in obese mice. Blood glucose levels were significantly elevated in all groups of mice treated with RK. This study suggests that higher doses of RK may cause adverse effects in health compromised conditions. Under these conditions, prolonged use of RK, especially in high doses, may pose a health hazard.


Assuntos
Fármacos Antiobesidade/efeitos adversos , Butanonas/efeitos adversos , Obesidade , Animais , Fármacos Antiobesidade/administração & dosagem , Butanonas/administração & dosagem , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Aromatizantes/administração & dosagem , Aromatizantes/efeitos adversos , Inflamação/etiologia , Inflamação/mortalidade , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/efeitos adversos , Masculino , Camundongos , Camundongos Obesos , Obesidade/etiologia , Obesidade/mortalidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA