Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7440, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978193

RESUMO

Real-time probing of electrons can uncover intricate relaxation mechanisms and many-body interactions in strongly correlated materials. Here, we introduce time, momentum, and energy resolved pump-probe tunneling spectroscopy (Tr-MERTS). The method allows the injection of electrons at a particular energy and observation of their subsequent decay in energy-momentum space. Using Tr-MERTS, we visualize electronic decay processes, with lifetimes from tens of nanoseconds to tens of microseconds, in Landau levels formed in a GaAs quantum well. Although most observed features agree with simple energy-relaxation, we discovered a splitting in the nonequilibrium energy spectrum in the vicinity of a ferromagnetic state. An exact diagonalization study suggests that the splitting arises from a maximally spin-polarized state with higher energy than a conventional equilibrium skyrmion. Furthermore, we observe time-dependent relaxation of the splitting, which we attribute to single-flipped spins forming skyrmions. These results establish Tr-MERTS as a powerful tool for studying the properties of a 2DES beyond equilibrium.

2.
Phys Rev Lett ; 123(4): 046601, 2019 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-31491239

RESUMO

We report the first electronic compressibility measurements of magic-angle twisted bilayer graphene. The evolution of the compressibility with carrier density offers insights into the interaction-driven ground state that have not been accessible in prior transport and tunneling studies. From capacitance measurements, we determine the chemical potential as a function of carrier density and find the widths of the energy gaps at fractional filling of the moiré lattice. In the electron-doped regime, we observe unexpectedly large gaps at quarter- and half-filling and strong electron-hole asymmetry. Moreover, we measure a ∼35 meV minibandwidth that is much wider than most theoretical estimates. Finally, we explore the field dependence up to the quantum Hall regime and observe significant differences from transport measurements.

3.
Nat Commun ; 8(1): 948, 2017 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-29038518

RESUMO

The high magnetic field electronic structure of bilayer graphene is enhanced by the spin, valley isospin, and an accidental orbital degeneracy, leading to a complex phase diagram of broken symmetry states. Here, we present a technique for measuring the layer-resolved charge density, from which we directly determine the valley and orbital polarization within the zero energy Landau level. Layer polarization evolves in discrete steps across 32 electric field-tuned phase transitions between states of different valley, spin, and orbital order, including previously unobserved orbitally polarized states stabilized by skew interlayer hopping. We fit our data to a model that captures both single-particle and interaction-induced anisotropies, providing a complete picture of this correlated electron system. The resulting roadmap to symmetry breaking paves the way for deterministic engineering of fractional quantum Hall states, while our layer-resolved technique is readily extendable to other two-dimensional materials where layer polarization maps to the valley or spin quantum numbers.The phase diagram of bilayer graphene at high magnetic fields has been an outstanding question, with orders possibly between multiple internal quantum degrees of freedom. Here, Hunt et al. report the measurement of the valley and orbital order, allowing them to directly reconstruct the phase diagram.

4.
Nature ; 505(7484): 528-32, 2014 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-24362569

RESUMO

Low-dimensional electronic systems have traditionally been obtained by electrostatically confining electrons, either in heterostructures or in intrinsically nanoscale materials such as single molecules, nanowires and graphene. Recently, a new method has emerged with the recognition that symmetry-protected topological (SPT) phases, which occur in systems with an energy gap to quasiparticle excitations (such as insulators or superconductors), can host robust surface states that remain gapless as long as the relevant global symmetry remains unbroken. The nature of the charge carriers in SPT surface states is intimately tied to the symmetry of the bulk, resulting in one- and two-dimensional electronic systems with novel properties. For example, time reversal symmetry endows the massless charge carriers on the surface of a three-dimensional topological insulator with helicity, fixing the orientation of their spin relative to their momentum. Weakly breaking this symmetry generates a gap on the surface, resulting in charge carriers with finite effective mass and exotic spin textures. Analogous manipulations have yet to be demonstrated in two-dimensional topological insulators, where the primary example of a SPT phase is the quantum spin Hall state. Here we demonstrate experimentally that charge-neutral monolayer graphene has a quantum spin Hall state when it is subjected to a very large magnetic field angled with respect to the graphene plane. In contrast to time-reversal-symmetric systems, this state is protected by a symmetry of planar spin rotations that emerges as electron spins in a half-filled Landau level are polarized by the large magnetic field. The properties of the resulting helical edge states can be modulated by balancing the applied field against an intrinsic antiferromagnetic instability, which tends to spontaneously break the spin-rotation symmetry. In the resulting canted antiferromagnetic state, we observe transport signatures of gapped edge states, which constitute a new kind of one-dimensional electronic system with a tunable bandgap and an associated spin texture.

5.
Science ; 340(6139): 1427-30, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23686343

RESUMO

van der Waals heterostructures constitute a new class of artificial materials formed by stacking atomically thin planar crystals. We demonstrated band structure engineering in a van der Waals heterostructure composed of a monolayer graphene flake coupled to a rotationally aligned hexagonal boron nitride substrate. The spatially varying interlayer atomic registry results in both a local breaking of the carbon sublattice symmetry and a long-range moiré superlattice potential in the graphene. In our samples, this interplay between short- and long-wavelength effects resulted in a band structure described by isolated superlattice minibands and an unexpectedly large band gap at charge neutrality. This picture is confirmed by our observation of fractional quantum Hall states at ± 5/3 filling and features associated with the Hofstadter butterfly at ultrahigh magnetic fields.

6.
Science ; 332(6031): 825-8, 2011 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-21566188

RESUMO

Increases in the gate capacitance of field-effect transistor structures allow the production of lower-power devices that are compatible with higher clock rates, driving the race for developing high-κ dielectrics. However, many-body effects in an electronic system can also enhance capacitance. Onto the electron system that forms at the LaAlO(3)/SrTiO(3) interface, we fabricated top-gate electrodes that can fully deplete the interface of all mobile electrons. Near depletion, we found a greater than 40% enhancement of the gate capacitance. Using an electric-field penetration measurement method, we show that this capacitance originates from a negative compressibility of the interface electron system. Capacitance enhancement exists at room temperature and arises at low electron densities, in which disorder is strong and the in-plane conductance is much smaller than the quantum conductance.

7.
Nature ; 464(7288): 566-70, 2010 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-20336140

RESUMO

The two-dimensional electron system is a powerful laboratory for investigating the physics of interacting particles. Application of a large magnetic field produces massively degenerate quantum levels known as Landau levels; within a Landau level the kinetic energy of the electrons is suppressed, and electron-electron interactions set the only energy scale. Coulomb interactions break the degeneracy of the Landau levels and can cause the electrons to order into complex ground states. Here we observe, in the high energy single particle spectrum of this system, salient and unexpected structure that extends across a wide range of Landau level filling fractions. The structure appears only when the two-dimensional electron system is cooled to very low temperatures, indicating that it arises from delicate ground state correlations. We characterize this structure by its evolution with changing electron density and applied magnetic field, and present two possible models for understanding these observations. Some of the energies of the features agree qualitatively with what might be expected for composite fermions, which have proven effective for interpreting other experiments in this regime. At the same time, a simple model with electrons localized on ordered lattice sites also generates structure similar to that observed in the experiment. Neither of these models alone is sufficient to explain the observations across the entire range of densities measured. The discovery of this unexpected prominent structure in the single particle spectrum of an otherwise thoroughly studied system suggests that there exist core features of the two-dimensional electron system that have yet to be understood.

8.
Nature ; 448(7150): 176-9, 2007 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-17625561

RESUMO

Spectroscopic methods involving the sudden injection or ejection of electrons in materials are a powerful probe of electronic structure and interactions. These techniques, such as photoemission and tunnelling, yield measurements of the 'single-particle' density of states spectrum of a system. This density of states is proportional to the probability of successfully injecting or ejecting an electron in these experiments. It is equal to the number of electronic states in the system able to accept an injected electron as a function of its energy, and is among the most fundamental and directly calculable quantities in theories of highly interacting systems. However, the two-dimensional electron system (2DES), host to remarkable correlated electron states such as the fractional quantum Hall effect, has proved difficult to probe spectroscopically. Here we present an improved version of time-domain capacitance spectroscopy that allows us to measure the single-particle density of states of a 2DES with unprecedented fidelity and resolution. Using the method, we perform measurements of a cold 2DES, providing direct measurements of interesting correlated electronic effects at energies that are difficult to reach with other techniques; these effects include the single-particle exchange-enhanced spin gap, single-particle lifetimes in the quantum Hall system, and exchange splitting of Landau levels not at the Fermi surface.

9.
Phys Rev Lett ; 95(13): 136804, 2005 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-16197165

RESUMO

We use a scanning capacitance probe to image transport in the quantum Hall system. Applying a dc bias voltage to the tip induces a ring-shaped incompressible strip (IS) in the 2D electron system (2DES) that moves with the tip. At certain tip positions, short-range disorder in the 2DES creates a quantum dot island in the IS. These islands enable resonant tunneling across the IS, enhancing its conductance by more than 4 orders of magnitude. The images provide a quantitative measure of disorder and suggest resonant tunneling as the primary mechanism for transport across ISs.

10.
Science ; 304(5670): 524-5, 2004 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-15105482
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA