Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 5151, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620344

RESUMO

Peptidoglycan (PG) is an essential structural component of the bacterial cell wall that is synthetized during cell division and elongation. PG forms an extracellular polymer crucial for cellular viability, the synthesis of which is the target of many antibiotics. PG assembly requires a glycosyltransferase (GT) to generate a glycan polymer using a Lipid II substrate, which is then crosslinked to the existing PG via a transpeptidase (TP) reaction. A Shape, Elongation, Division and Sporulation (SEDS) GT enzyme and a Class B Penicillin Binding Protein (PBP) form the core of the multi-protein complex required for PG assembly. Here we used single particle cryo-electron microscopy to determine the structure of a cell elongation-specific E. coli RodA-PBP2 complex. We combine this information with biochemical, genetic, spectroscopic, and computational analyses to identify the Lipid II binding sites and propose a mechanism for Lipid II polymerization. Our data suggest a hypothesis for the movement of the glycan strand from the Lipid II polymerization site of RodA towards the TP site of PBP2, functionally linking these two central enzymatic activities required for cell wall peptidoglycan biosynthesis.


Assuntos
Escherichia coli , Peptidil Transferases , Microscopia Crioeletrônica , Escherichia coli/genética , Peptidoglicano , Biologia Molecular , Antibacterianos , Glicosiltransferases
2.
Nature ; 604(7905): 371-376, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35388216

RESUMO

The outer membrane of Gram-negative bacteria has an external leaflet that is largely composed of lipopolysaccharide, which provides a selective permeation barrier, particularly against antimicrobials1. The final and crucial step in the biosynthesis of lipopolysaccharide is the addition of a species-dependent O-antigen to the lipid A core oligosaccharide, which is catalysed by the O-antigen ligase WaaL2. Here we present structures of WaaL from Cupriavidus metallidurans, both in the apo state and in complex with its lipid carrier undecaprenyl pyrophosphate, determined by single-particle cryo-electron microscopy. The structures reveal that WaaL comprises 12 transmembrane helices and a predominantly α-helical periplasmic region, which we show contains many of the conserved residues that are required for catalysis. We observe a conserved fold within the GT-C family of glycosyltransferases and hypothesize that they have a common mechanism for shuttling the undecaprenyl-based carrier to and from the active site. The structures, combined with genetic, biochemical, bioinformatics and molecular dynamics simulation experiments, offer molecular details on how the ligands come in apposition, and allows us to propose a mechanistic model for catalysis. Together, our work provides a structural basis for lipopolysaccharide maturation in a member of the GT-C superfamily of glycosyltransferases.


Assuntos
Ligases , Lipopolissacarídeos , Antígenos O , Proteínas de Bactérias/química , Carbono-Oxigênio Ligases/química , Carbono-Oxigênio Ligases/genética , Microscopia Crioeletrônica , Glicosiltransferases , Bactérias Gram-Negativas , Lipopolissacarídeos/química , Lipopolissacarídeos/metabolismo
3.
J Mol Biol ; 432(18): 5137-5151, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32389689

RESUMO

In mycobacteria, phosphatidylinositol (PI) acts as a common lipid anchor for key components of the cell wall, including the glycolipids phosphatidylinositol mannoside, lipomannan, and lipoarabinomannan. Glycolipids in Mycobacterium tuberculosis, the causative agent of tuberculosis, are important virulence factors that modulate the host immune response. The identity-defining step in PI biosynthesis in prokaryotes, unique to mycobacteria and few other bacterial species, is the reaction between cytidine diphosphate-diacylglycerol and inositol-phosphate to yield phosphatidylinositol-phosphate, the immediate precursor to PI. This reaction is catalyzed by the cytidine diphosphate-alcohol phosphotransferase phosphatidylinositol-phosphate synthase (PIPS), an essential enzyme for mycobacterial viability. Here we present structures of PIPS from Mycobacterium kansasii with and without evidence of donor and acceptor substrate binding obtained using a crystal engineering approach. PIPS from Mycobacterium kansasii is 86% identical to the ortholog from M. tuberculosis and catalytically active. Functional experiments guided by our structural results allowed us to further characterize the molecular determinants of substrate specificity and catalysis in a new mycobacterial species. This work provides a framework to strengthen our understanding of phosphatidylinositol-phosphate biosynthesis in the context of mycobacterial pathogens.


Assuntos
CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferase/química , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferase/metabolismo , Mycobacterium/metabolismo , Fosfatos de Fosfatidilinositol/biossíntese , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Biocatálise , Modelos Moleculares , Mycobacterium/química , Conformação Proteica , Especificidade por Substrato
4.
FEBS Lett ; 590(16): 2558-65, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27406896

RESUMO

We focus on the spectral dependence of plasmon-induced enhancement of fluorescence of Chlorobaculum tepidum reaction centers. When deposited on silver island film, they exhibit up to a 60-fold increase in fluorescence. The dependence of enhancement factors on the excitation wavelength is not correlated with the absorption spectrum of the plasmonic structure. In particular, the presence of one (or multiple) trimers of the Fenna-Matthews-Olson (FMO) protein reveals itself in bimodal distribution of enhancement factors for the excitation at 589 nm, the wavelength corresponding to bacteriochlorophyll absorption of FMO and the core of the RC. We conclude that the structure of multichromophoric complexes can substantially affect the impact of plasmonic excitations, which is important in the context of assembling functional biohybrid systems.


Assuntos
Proteínas de Bactérias/química , Chlorobi/química , Citoplasma/química , Fluorescência , Complexos de Proteínas Captadores de Luz/química , Proteínas de Bactérias/genética , Chlorobi/genética , Chlorobi/metabolismo , Citoplasma/genética , Transferência de Energia/genética , Complexos de Proteínas Captadores de Luz/genética , Espectrometria de Fluorescência
5.
Structure ; 24(5): 741-749, 2016 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-27112601

RESUMO

Escherichia coli possesses a number of specific K(+) influx and efflux systems that maintain an appropriate intracellular K(+) concentration. Although regulatory mechanisms have been identified for a number of these transport systems, the exact mechanism through which K(+) concentration is sensed in the cell remains unknown. In this work we show that Kbp (K(+) binding protein, formerly YgaU), a soluble 16-kDa cytoplasmic protein from Escherichia coli, is a highly specific K(+) binding protein and is required for normal growth in the presence of high levels of external K(+). Kbp binds a single potassium ion with high specificity over Na(+) and other metal ions found in biological systems, although, in common with K(+) transporters, it also binds Rb(+) and Cs(+). Dissection of the K(+) binding determinants of Kbp suggests a mechanism through which Kbp is able to sense changes in K(+) concentration over the relevant range of intracellular K(+) concentrations.


Assuntos
Proteínas de Escherichia coli/química , Potássio/metabolismo , Sítios de Ligação , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Sódio/metabolismo
6.
Photosynth Res ; 127(1): 103-8, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26168991

RESUMO

A silver island film (SIF) substrate was used to demonstrate that Metal-Enhanced Fluorescence (MEF) is a powerful tool to enable detection of emission from (bio)molecules at very low concentrations. The experiments were carried out with the Fenna-Matthews-Olson (FMO) pigment-protein complex from the photosynthetic green sulfur bacterium Chlorobaculum tepidum. FMO was diluted to a level, at which no emission was detectable on a glass substrate. In contrast, the fluorescence of FMO was readily observed on the SIF substrate, even though the emission wavelength of FMO is displaced by over 300 nm from the maximum of the plasmon resonance of the SIF layer. Estimated enhancements of the fluorescence intensity of FMO on SIF are about 40-fold. The enhancement factor correlates with the improvement of the signal-to-noise ratio for FMO emission on SIF substrates.


Assuntos
Proteínas de Bactérias/química , Complexos de Proteínas Captadores de Luz/química , Nanoestruturas/química , Prata , Espectrometria de Fluorescência/métodos , Fluorescência , Vidro , Microscopia de Força Atômica , Razão Sinal-Ruído , Espectrometria de Fluorescência/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA