Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(19)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36236657

RESUMO

A highly sensitive strain sensor based on tunable cascaded Fabry-Perot interferometers (FPIs) is proposed and experimentally demonstrated. Cascaded FPIs consist of a sensing FPI and a reference FPI, which effectively generate the Vernier effect (VE). The sensing FPI comprises a hollow core fiber (HCF) segment sandwiched between single-mode fibers (SMFs), and the reference FPI consists of a tunable air reflector, which is constituted by a computer-programable fiber holding block to adjust the desired cavity length. The simulation results predict the dispersion characteristics of modes carried by HCF. The sensor's parameters are designed to correspond to a narrow bandwidth range, i.e., 1530 nm to 1610 nm. The experimental results demonstrate that the proposed sensor exhibits optimum strain sensitivity of 23.9 pm/µÎµ, 17.54 pm/µÎµ, and 14.11 pm/µÎµ cascaded with the reference FPI of 375 µm, 365 µm, and 355 µm in cavity length, which is 13.73, 10.08, and 8.10 times higher than the single sensing FPI with a strain sensitivity of 1.74 pm/µÎµ, respectively. The strain sensitivity of the sensor can be further enhanced by extending the source bandwidth. The proposed sensor exhibits ultra-low temperature sensitivity of 0.49 pm/°C for a temperature range of 25 °C to 135 °C, providing good isolation for eliminating temperature-strain cross-talk. The sensor is robust, cost-effective, easy to manufacture, repeatable, and shows a highly linear and stable response for strain sensing. Based on the sensor's performance, it may be a good candidate for high-resolution strain sensing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA