Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Orthop Res ; 42(6): 1180-1189, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38245841

RESUMO

Tendon allograft and xenograft processing often involves one or more steps of freezing and thawing. As failure strength is an important graft consideration, this study aimed to evaluate effects on failure properties when varying freeze-thaw conditions. Kangaroo tendons, a potential xenograft source, were used to evaluate changes in ultimate tensile strength (UTS), failure strain and elastic modulus after exposure to different freezer-storage temperatures (-20°C vs. -80°C), storage durations (1, 3, 6, 9, or 12 months), number of freeze-thaw cycles (1, 2, 3, 4, 5, or 10), or freeze-thaw temperature ranges (including freezing in liquid nitrogen to thawing at 37°C). Tendons stored for 6 or more months had significantly increased UTS and elastic modulus compared with 1 or 3 months of storage. This increase occurred irrespective of the freezing temperature (-20°C vs. -80°C) or the number of freeze-thaw cycles (1 vs. 10). In contrast, UTS, failure strain and the elastic modulus were no different between storage temperatures, number of freeze-thaw cycles and multiple freeze-thaw cycles across a range of freeze and thaw temperatures. Common freeze-thaw protocols did not negatively affect failure properties, providing flexibility for graft testing, storage, transportation and decellularisation procedures. However, the change in properties with the overall storage duration has implications for assessing the consistent performance of grafts stored for short versus extended periods of time (<6 months vs. >6 months), and the interpretation of data obtained from tissues of varying or unknown storage durations.


Assuntos
Criopreservação , Tendões , Resistência à Tração , Animais , Tendões/fisiologia , Fenômenos Biomecânicos , Macropodidae/fisiologia , Congelamento , Módulo de Elasticidade
2.
Am J Sports Med ; 51(3): 768-778, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36594505

RESUMO

BACKGROUND: The use of allograft tendons has increased for primary and revision anterior cruciate ligament reconstruction, but allograft supply is currently limited to a narrow range of tendons and donors up to the age of 65 years. Expanding the range of donors and tendons could help offset an increasing clinical demand. PURPOSE: To investigate the effects of donor age, sex, height, and specific tendon on the mechanical properties of a range of human lower leg tendons. STUDY DESIGN: Descriptive laboratory study. METHODS: Nine tendons were retrieved from 39 fresh-frozen human cadaveric lower legs (35 donors [13 female, 22 male]; age, 49-99 years; height, 57-85 inches [145-216 cm]) including: Achilles tendon, tibialis posterior and anterior, fibularis longus and brevis, flexor and extensor hallucis longus, plantaris, and flexor digitorum longus. Tendons underwent tensile loading to failure measuring cross-sectional area (CSA), maximum load, strain at failure, ultimate tensile strength, and elastic modulus. Results from 332 tendons were analyzed using mixed-effects linear regression, accounting for donor age, sex, height, and weight. RESULTS: Mechanical properties were significantly different among tendons and were substantially greater than the effects of donor characteristics. Significant effects of donor sex, age, and height were limited to specific tendons: Achilles tendon, tibialis posterior, and tibialis anterior. All other tendons were unaffected. The Achilles tendon was most influenced by donor variables: greater CSA in men (ß = 15.45 mm2; Sidák adjusted P < .0001), decreased maximum load with each year of increased age (ß = -17.20 N per year; adjusted P = .0253), and increased CSA (ß = 1.92 mm2 per inch; adjusted P < .0001) and maximum load (ß = 86.40 N per inch; adjusted P < .0001) with each inch of increased height. CONCLUSION: Mechanical properties vary significantly across different human tendons. The effects of donor age, sex, and height are relatively small, are limited to specific tendons, and affect different tendons uniquely. The findings indicate that age negatively affected only the Achilles tendon (maximum load) and challenge the exclusion of donors aged >65 years across all tendon grafts. CLINICAL RELEVANCE: The findings support including a broader range of tendons for use as allografts for anterior cruciate ligament reconstruction and reviewing the current exclusion criterion of donors aged >65 years.


Assuntos
Tendão do Calcâneo , Lesões do Ligamento Cruzado Anterior , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Ligamento Cruzado Anterior/cirurgia , Lesões do Ligamento Cruzado Anterior/cirurgia , Fenômenos Biomecânicos , Aloenxertos
3.
J Biomech ; 114: 110152, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33285491

RESUMO

Sex and joint injury are risk factors implicated in the onset and progression of osteoarthritis (OA). In mouse models of post-traumatic OA (ptOA), the pathogenesis of disease is notably impacted by sex (often worse in males) and injury model (e.g. meniscal versus ligament injury). Increasing ptOA progression and severity is often associated with greater relative instability of the joint but few studies have directly quantified changes in joint mechanics after injury and compared outcomes across multiple models in both male and female mice. Passive anterior-posterior knee biomechanics were evaluated in 10-week-old, male and female C57BL/6J mice. PtOA injury models included destabilisation of the medial meniscus (DMM), anterior cruciate ligament transection (ACLT) or mechanical rupture (ACLR), and combined DMM and ACLT (DMM + ACLT). Sham operated and non-operated controls (NOC) were included for baseline comparisons. The test apparatus loaded hindlimbs at 60° flexion between ± 1 N at 0.5 mm/s (build specifications available for download: https://doi.org/10.17632/z754455x3c.1). Measures of joint laxity (range of motion, neutral zone) and stiffness were calculated. Joint laxity was comparable between male and female mice while joint stiffness was greater in females (P ≤ 0.002, correcting for body-mass and injury-model). Anterior-posterior joint mechanics were minimally altered by DMM but significantly affected by loss of the ACL (P < 0.001), with equivalent changes between ACL-injury models despite different injury mechanisms and adjacent meniscal damage. These findings suggest that despite the important role of joint injury; sex- and model-specific differences in ptOA progression and severity are not primarily driven by altered anterior-posterior knee biomechanics.


Assuntos
Lesões do Ligamento Cruzado Anterior , Osteoartrite do Joelho , Osteoartrite , Animais , Lesões do Ligamento Cruzado Anterior/complicações , Fenômenos Biomecânicos , Feminino , Articulação do Joelho , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteoartrite do Joelho/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA