Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 349: 141018, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38141671

RESUMO

Oil sands process-affected water (OSPW) is a by-product of the extraction of bitumen, and volumes of OSPW have accumulated across the Alberta oil sands region due to the governments zero-discharge policy. Some dissolved organics in OSPW, including toxic naphthenic acids (NAs), can be biodegraded in oxic conditions, thereby reducing the toxicity of OSPW. While there has been much focus on degradation of NAs, the biodegradation of other dissolved organic chemicals by endogenous organisms remains understudied. Here, using the HPLC-ultrahigh resolution Orbitrap mass spectrometry, we examined the microbial biodegradation of dissolved organic acids in OSPW. Non-targeted analysis enabled the estimation of biodegradation rates for unique heteroatomic chemical classes detected in negative ion mode. The microcosm experiments were conducted with and without nutrient supplementation, and the changes in the microbial community over time were investigated. Without added nutrients, internal standard-adjusted intensities of all organics, including NAs, were largely unchanged. The addition of nutrients increased the biodegradation rate of O2- and SO2- chemical classes. While anoxic biodegradation can occur in tailings ponds and end pit lakes, microbial community analyses confirmed that the presence of oxygen stimulated biodegradation of the OSPW samples studied. We detected several aerobic hydrocarbon-degrading microbes (e.g., Pseudomonas and Brevundimonas), and microbes capable of degrading sulfur-containing hydrocarbons (e.g., Microbacterium). Microbial community diversity decreased over time with nutrient addition. Overall, the results from this study indicate that toxic dissolved organics beyond NAs can be biodegraded by endogenous organisms in OSPW, but reaffirms that biological treatment strategies require careful consideration of how nutrients and dissolved oxygen may impact efficacy.


Assuntos
Campos de Petróleo e Gás , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Compostos Orgânicos , Ácidos Carboxílicos/química , Oxigênio/análise
2.
Chemosphere ; 258: 127281, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32540545

RESUMO

Development of Alberta's oil sands requires large volumes of water, leading to the abundance of oil sands process affected water (OSPW) that must be remediated prior to discharge or reuse. OSPW contains a variety of dissolved organic compounds, however naphthenic acids (NAs) have been found to contribute significantly to the toxicity of OSPW. A fungus, Trichoderma harzianum, isolated directly from OSPW, has previously demonstrated a high tolerance and capacity for growth in the presence of commercial NAs. This study conducted microcosm experiments to elucidate and characterize the capacity of T. harzianum to degrade labile commercial NAs (Merichem), and OSPW-sourced naphthenic acid fraction compounds (NAFCs). Additionally, two model NA compounds, the simple single ring cyclohexane carboxylic acid (CHCA) and complex diamondoid 1-adamanatane carboxylic acid (ADA), were utilized to determine the influence of NA structure on degradation. T. harzianum degraded 14% of CHCA, 13% of ADA, and 23-47% of Merichem NAs. Additionally, Orbitrap mass spectrometry revealed a large change in Z-series within NAFCs. This removal and shift in composition correlated to a 59% and 52% drop in toxicity as per Microtox, for Merichem NAs and NAFCs respectively. This proof of concept experiment confirms that the fungal species T. harzianum can contribute to the biodegradation of complex dissolved organics found in OSPW, including cyclic and diamondoid structures.


Assuntos
Ácidos Carboxílicos/metabolismo , Recuperação e Remediação Ambiental/métodos , Campos de Petróleo e Gás , Trichoderma/metabolismo , Águas Residuárias/microbiologia , Poluentes Químicos da Água/metabolismo , Adamantano/química , Adamantano/metabolismo , Alberta , Biodegradação Ambiental , Ácidos Carboxílicos/química , Cicloexanos/química , Cicloexanos/metabolismo
3.
Environ Sci Process Impacts ; 22(5): 1243-1255, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32227038

RESUMO

The chemical composition of water-soluble organics in oil sands process-affected water (OSPW) is primarily composed of natural constituents of bitumen that are solubilized and concentrated during aqueous extraction of oil sands. OSPW organics are persistent and acutely toxic, and a leading remediation strategy is long-term ageing in end-pit lakes, despite limited data available on its photochemical fate. Here, direct photolysis of whole OSPW, or of its constituent fractions, was examined at environmentally relevant wavelengths (>290 nm) in bench-top studies. Changes in the chemical profiles of whole OSPW, acid- (AEO), and base-extractable organics (BEO) were characterized by liquid chromatography with ultra-high resolution mass spectrometry in negative (-) and positive (+) ionization modes. Following 18 d of irradiation, photolysis reduced the total ion intensity in all samples in both modes. The most photo-labile species included the O2-, O3-, O4-, O2S-, and O4S- chemical classes, which were depleted in whole OSPW by 93-100% after only 5 d. In positive mode, detected species were more recalcitrant than those detected in negative mode, with an average reduction across all heteroatomic classes of 75 ± 11.0% after 18 d. Estimated environmental half-lives for heteroatomic classes ranged from 57 d (O4S-) to 545 d (O3N+), with a greater recalcitrance for classes detected in positive mode compared to negative mode. Under field conditions in end-pit lakes, natural photolysis may be an important mechanism for effective OSPW remediation, and we suggest that future end-pit lakes be shallow to maximize light penetration and natural photolysis in ageing OSPW.


Assuntos
Hidrocarbonetos , Campos de Petróleo e Gás , Fotólise , Poluentes Químicos da Água , Ácidos Carboxílicos
4.
Chemosphere ; 209: 551-559, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29945048

RESUMO

The purpose of this study was to determine the capacity of indigenous microbes in tailings to degrade bitumen aerobically, and if acetate biostimulation further improved degradation. Fluid fine tailings, from Base Mine Lake (BML), were used as microbial inocula, and bitumen in the tailings served as a potential carbon source during the experiment. The tailings were capped with 0.22 µm-filtered BML surface water with or without BML bitumen and acetate addition and incubated for 100 days at 20 °C. CO2 production and petroleum hydrocarbon reductions (50-70% for the biostimulation treatment) in the tailings were observed. DNA was extracted directly from the tailings, and increased bacterial density was observed by qPCR targeting the rpoB gene in the biostimulated group. 16 S rRNA sequencing was used to determine microbial composition profiles in each treatment group. The microbial communities indigenous to the tailings shifted after the bitumen was added. Acidovorax, Rhodoferax, Pseudomonas and Pseudoxanthomonas spp. significantly increased compared to the original microbial community and demonstrated tolerance to bitumen-based toxicity. The first three genera showed more potential for biostimulation treatment with acetate and may be important bitumen/hydrocarbon-degraders in an oil sands end pit lake environment.


Assuntos
Bactérias/metabolismo , Biodegradação Ambiental , Hidrocarbonetos/química , Hidrocarbonetos/metabolismo , Campos de Petróleo e Gás/microbiologia , Petróleo/metabolismo , Lagos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA