Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38892245

RESUMO

Breeding salt-tolerant crops is necessary to reduce food insecurity. Prebreeding populations are fundamental for uncovering tolerance alleles from wild germplasm. To obtain a physiological interpretation of the agronomic salt tolerance and better criteria to identify candidate genes, quantitative trait loci (QTLs) governing productivity-related traits in a population of recombinant inbred lines (RIL) derived from S. pimpinellifolium were reanalyzed using an SNP-saturated linkage map and clustered using QTL meta-analysis to synthesize QTL information. A total of 60 out of 85 QTLs were grouped into 12 productivity MQTLs. Ten of them were found to overlap with other tomato yield QTLs that were found using various mapping populations and cultivation conditions. The MQTL compositions showed that fruit yield was genetically associated with leaf water content. Additionally, leaf Cl- and K+ contents were related to tomato productivity under control and salinity conditions, respectively. More than one functional candidate was frequently found, explaining most productivity MQTLs, indicating that the co-regulation of more than one gene within those MQTLs might explain the clustering of agronomic and physiological QTLs. Moreover, MQTL1.2, MQTL3 and MQTL6 point to the root as the main organ involved in increasing productivity under salinity through the wild allele, suggesting that adequate rootstock/scion combinations could have a clear agronomic advantage under salinity.


Assuntos
Mapeamento Cromossômico , Locos de Características Quantitativas , Tolerância ao Sal , Solanum , Tolerância ao Sal/genética , Solanum/genética , Solanum/metabolismo , Fenótipo , Polimorfismo de Nucleotídeo Único , Melhoramento Vegetal , Ligação Genética , Genes de Plantas
2.
Int J Mol Sci ; 24(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37958745

RESUMO

The excessive accumulation of chloride (Cl-) in leaves due to salinity is frequently related to decreased yield in citrus. Two salt tolerance experiments to detect quantitative trait loci (QTLs) for leaf concentrations of Cl-, Na+, and other traits using the same reference progeny derived from the salt-tolerant Cleopatra mandarin (Citrus reshni) and the disease-resistant donor Poncirus trifoliata were performed with the aim to identify repeatable QTLs that regulate leaf Cl- (and/or Na+) exclusion across independent experiments in citrus, as well as potential candidate genes involved. A repeatable QTL controlling leaf Cl- was detected in chromosome 6 (LCl-6), where 23 potential candidate genes coding for transporters were identified using the C. clementina genome as reference. Transcriptomic analysis revealed two important candidate genes coding for a member of the nitrate transporter 1/peptide transporter family (NPF5.9) and a major facilitator superfamily (MFS) protein. Cell wall biosynthesis- and secondary metabolism-related processes appeared to play a significant role in differential gene expression in LCl-6. Six likely gene candidates were mapped in LCl-6, showing conserved synteny in C. reshni. In conclusion, markers to select beneficial Cleopatra mandarin alleles of likely candidate genes in LCl-6 to improve salt tolerance in citrus rootstock breeding programs are provided.


Assuntos
Citrus , Locos de Características Quantitativas , Tolerância ao Sal/genética , Transcriptoma , Citrus/genética , Melhoramento Vegetal , Proteínas de Membrana Transportadoras/genética
3.
Int J Mol Sci ; 23(9)2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35563521

RESUMO

Salt tolerance is a target trait in plant science and tomato breeding programs. Wild tomato accessions have been often explored for this purpose. Since shoot Na+/K+ is a key component of salt tolerance, RNAi-mediated knockdown isogenic lines obtained for Solanum galapagense alleles encoding both class I Na+ transporters HKT1;1 and HKT1;2 were used to investigate the silencing effects on the Na and K contents of the xylem sap, and source and sink organs of the scion, and their contribution to salt tolerance in all 16 rootstock/scion combinations of non-silenced and silenced lines, under two salinity treatments. The results show that SgHKT1;1 is operating differently from SgHKT1;2 regarding Na circulation in the tomato vascular system under salinity. A model was built to show that using silenced SgHKT1;1 line as rootstock would improve salt tolerance and fruit quality of varieties carrying the wild type SgHKT1;2 allele. Moreover, this increasing effect on both yield and fruit soluble solids content of silencing SgHKT1;1 could explain that a low expressing HKT1;1 variant was fixed in S. lycopersicum during domestication, and the paradox of increasing agronomic salt tolerance through silencing the HKT1;1 allele from S. galapagense, a salt adapted species.


Assuntos
Proteínas de Transporte de Cátions , Solanum lycopersicum , Solanum , Proteínas de Transporte de Cátions/genética , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Potássio/metabolismo , Salinidade , Sódio/metabolismo , Solanum/genética
4.
Genes (Basel) ; 12(1)2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33374834

RESUMO

Developing drought-tolerant crops is an important strategy to mitigate climate change impacts. Modulating root system function provides opportunities to improve crop yield under biotic and abiotic stresses. With this aim, a commercial hybrid tomato variety was grafted on a genotyped population of 123 recombinant inbred lines (RILs) derived from Solanumpimpinellifolium, and compared with self- and non-grafted controls, under contrasting watering treatments (100% vs. 70% of crop evapotranspiration). Drought tolerance was genetically analyzed for vegetative and flowering traits, and root xylem sap phytohormone and nutrient composition. Under water deficit, around 25% of RILs conferred larger total shoot dry weight than controls. Reproductive and vegetative traits under water deficit were highly and positively correlated to the shoot water content. This association was genetically supported by linkage of quantitative trait loci (QTL) controlling these traits within four genomic regions. From a total of 83 significant QTLs, most were irrigation-regime specific. The gene contents of 8 out of 12 genomic regions containing 46 QTLs were found significantly enriched at certain GO terms and some candidate genes from diverse gene families were identified. Thus, grafting commercial varieties onto selected rootstocks derived from S.pimpinellifolium provides a viable strategy to enhance drought tolerance in tomato.


Assuntos
Aclimatação/genética , Secas , Locos de Características Quantitativas , Solanum lycopersicum/fisiologia , Água/metabolismo , Quimera/genética , Quimera/metabolismo , Produção Agrícola/métodos , Ligação Genética , Genoma de Planta , Reguladores de Crescimento de Plantas/análise , Raízes de Plantas/química , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Xilema/química , Xilema/genética , Xilema/metabolismo
5.
Ann Bot ; 124(6): 933-946, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30753410

RESUMO

BACKGROUND AND AIMS: Arbuscular mycorrhizal fungi (AMF) play an important role in plant nutrition and protection against pests and diseases, as well as in soil structuration, nutrient cycling and, generally speaking, in sustainable agriculture, particularly under drought, salinity and low input or organic agriculture. However, little is known about the genetics of the AMF-plant association in tomato. The aim of this study was the genetic analysis of root AMF colonization in tomato via the detection of the quantitative trait loci (QTLs) involved. METHODS: A population of 130 recombinant inbred lines derived from the wild species Solanum pimpinellifolium, genotyped for 1899 segregating, non-redundant single nucleotide polymorphisms (SNPs) from the SolCAP tomato panel, was characterized for intensity, frequency and arbuscular abundance of AMF colonization to detect the QTLs involved and to analyse the genes within their peaks (2-2.6 Mbp). KEY RESULTS: The three AMF colonization parameters were highly correlated (0.78-0.97) and the best one, with the highest heritability (0.23), corresponded to colonization intensity. A total of eight QTLs in chromosomes 1, 3, 4, 5, 6, 8, 9 and 10 were detected. Seven of them simultaneously affected intensity and arbuscule abundance. The allele increasing the expression of the trait usually came from the wild parent in accordance with the parental means, and several epistatic interactions were found relevant for breeding purposes. SlCCaMK and SlLYK13 were found among the candidate genes. Carbohydrate transmembrane transporter activity, lipid metabolism and transport, metabolic processes related to nitrogen and phosphate-containing compounds, regulation of carbohydrates, and other biological processes involved in the plant defence were found to be over-represented within the QTL peaks. CONCLUSIONS: Intensity is genetically the best morphological measure of tomato root AMF colonization. Wild alleles can improve AMF colonization, and the gene contents of AMF colonization QTLs might be important for explaining the establishment and functioning of the AMF-plant symbiosis.


Assuntos
Micorrizas , Solanum lycopersicum , Solanum , Agricultura , Fungos , Raízes de Plantas , Solo , Simbiose
6.
Plant Cell Environ ; 32(7): 928-38, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19302168

RESUMO

Tomato crop productivity under salinity can be improved by grafting cultivars onto salt-tolerant wild relatives, thus mediating the supply of root-derived ionic and hormonal factors that regulate leaf area and senescence. A tomato cultivar was grafted onto rootstocks from a population of recombinant inbred lines (RILs) derived from a Solanum lycopersicum x Solanum cheesmaniae cross and cultivated under moderate salinity (75 mM NaCl). Concentrations of Na(+), K(+) and several phytohormones [abscisic acid (ABA); the cytokinins (CKs) zeatin, Z; zeatin riboside, ZR; and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC)] were analysed in leaf xylem sap in graft combinations of contrasting vigour. Scion leaf area correlated with photosystem II (PSII) efficiency (F(v)/F(m)) and determined fruit productivity. Xylem K(+) (but not Na(+)), K(+)/Na(+), the active CK Z, the ratio with its storage form Z/ZR and especially the ratio between CKs and ACC (Z/ACC and Z + ZR/ACC) were positively loaded into the first principal component (PC) determining both leaf growth and PSII efficiency. In contrast, the ratio ACC/ABA was negatively correlated with leaf biomass. Although the underlying physiological mechanisms by which rootstocks mediate leaf area or chlorophyll fluorescence (and thus influence tomato salt tolerance) seem complex, a putative potassium-CK interaction involved in regulating both processes merits further attention.


Assuntos
Folhas de Planta/crescimento & desenvolvimento , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Solanum lycopersicum/crescimento & desenvolvimento , Xilema/metabolismo , Ácido Abscísico/metabolismo , Aminoácidos Cíclicos/metabolismo , Citocininas/metabolismo , Solanum lycopersicum/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/metabolismo , Potássio/metabolismo , Análise de Componente Principal , Plantas Tolerantes a Sal/metabolismo , Sódio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA