Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Indian J Clin Biochem ; 39(3): 322-330, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39005864

RESUMO

Prostate cancer (PCa) is the second most common cancer in men throughout the world, and the main cause of cancer death. Long noncoding RNAs (lncRNAs) act as crucial regulators in many human cancers. In this research, we measured the expression level of novel lncRNAs and their associated micro-RNAs (miRNAs) in PCa. In the present research, three lncRNAs were selected using the Mitranscriptome projec (CAT2064, CAT2042, and CAT2164.2). Samples of prostate tissue (20 PCa, and 20 BPH) and blood (14 PCa, and 14 BPH) were collected and the Real-time Quantitative Polymerase Chain Reaction (RT-qPCR) was used to measure the expression levels of the lncRNAs and their associated miRNAs. Based on our results, CAT2064 was significantly increased and CAT2042 was significantly decreased in human PCa tissue in comparison with BPH tissue. To discriminate PCa from BPH, CAT2064 (P < 0.05; 0.8750 AUC-ROC) showed a better potential as a diagnostic molecular biomarker compared to CAT2042 (P < 0.05; 0.8454 AUC-ROC). Furthermore, RT-qPCR results measured in blood samples from PCa patients showed a higher expression level of CAT2064 (P < 0.0001; AUC-ROC value of 0.8914) in comparison to CAT2042. CAT2064 and CAT2042 showed a positive correlation with the expression of miR-5095 and miR-1273a (r = 0.02885, 0.3202; P = 0.9413, 0.2266, respectively). CAT2064 and CAT2042 also had a negative correlation with miR-1304-3p and miR-1285-5p (r = - 0.3877, - 0.09330; P = 0.15, 0.7311, respectively). Collectively, CAT2064 and CAT2042 and their miRNA targets may constitute a regulatory network in PCa, and could serve as novel biomarkers. Supplementary Information: The online version contains supplementary material available at 10.1007/s12291-021-00999-6.

2.
Front Microbiol ; 15: 1379209, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774508

RESUMO

Gastric ulcers and gastric cancer are brought on by the Helicobacter pylori bacteria, which colonizes under the stomach mucous membrane. Different medication regimens are used to remove it, but the illness returns and becomes more resistant, which lowers the treatment rates. Additionally, this bacterium now exhibits a skyrocketing level of multi-drug resistance, necessitating recurrent therapeutic treatments. The negative effects of synthetic medications in comparison to conventional therapies are another significant factor in favor of non-pharmacological therapy. The most significant side effects of popular anti-gastric ulcer medications include nausea, vomiting, and diarrhea. Stomach ulcers have previously been treated with herbal remedies and complementary treatments like probiotics. When probiotics are ingested, the host experiences several advantages that may be brought about by altering the bacterial flora in the digestive system. Additionally, stronger-acting chemical compounds and plant extracts can be employed to treat patients. In this article, we look at the substances and medications that are utilized in place of synthetic stomach ulcer-curing treatments.

3.
J Biomol Struct Dyn ; 40(17): 7940-7948, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-33784944

RESUMO

In response to the current pandemic caused by the novel SARS-CoV-2, we design new compounds based on Lopinavir structure as an FDA-approved antiviral agent which is currently under more evaluation in clinical trials for COVID-19 patients. This is the first example of the preparation of Lopinavir isosteres from the main core of Lopinavir conducted to various heterocyclic fragments. It is proposed that main protease inhibitors play an important role in the cycle life of coronavirus. Thus, the protease inhibition effect of synthesized compounds was studied by molecular docking method. All of these 10 molecules, showing a good docking score compared. Molecular dynamics (MD) simulations also confirmed the stability of the best-designed compound in Mpro active site.Communicated by Ramaswamy H. Sarma.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Antivirais/química , Antivirais/farmacologia , Proteases 3C de Coronavírus , Inibidores de Protease de Coronavírus , Cisteína Endopeptidases/química , Dipeptídeos , Etilenos , Humanos , Lopinavir/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia
4.
Iran J Pharm Res ; 20(3): 399-418, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34903997

RESUMO

The recent prevalence of novel "coronavirus disease 2019" has expanded quickly globally, causing a universal pandemic. Herein, an effort was constructed to design a potent drug to inhibit the main protease of SARS-Cov-2 (3CLp) by means of structure-based drug design. A large library of the compounds was used for virtual screening. After molecular docking and ADME studies, we selected a compound with a better binding affinity to the 3CLp active site and acceptable ADME properties compared to the selected positive control drug. Molecular dynamic (MD) simulation (200 ns) and Molecular Mechanics-Poisson Boltzmann Surface Area (MM-PBSA) were used for further analysis. MD simulation outcomes have proved that the 3CLp-ZINC31157475 complex possesses a considerable value of dynamic properties such as flexibility, stability, compactness, and binding energy. Our MM-PBSA computation illustrates that ZINC31157475 is more potent (-88.03 kcal mol-1) than nelfinavir (-19.54 kcal mol-1) against COVID-19 3CLp. Further, we have determined that the main residues of the 3CLp interact with ligands from per-residue binding energy. In conclusion, we suggest that ZINC31157475 can potentially treat COVID-19 by inhibition of the 3CLp. However, in-vitro and in-vivo study is essential for approval of this suggestion.

5.
J Cell Physiol ; 234(9): 14941-14950, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30786013

RESUMO

Recent studies demonstrated that a combination of the gut microbiome has the vital effect on the efficacy of anticancer immune therapies. Regulatory effects of microbiota have been shown in different types of cancer therapies such as chemotherapy and immunotherapy. Immune-checkpoint-blocked therapies are the recent efficient cancer immunotherapy strategies. The target of immune-checkpoint blocking is cytotoxic T lymphocyte protein-4 (CTLA-4) or blockade of programmed death-1 (PD-1) protein and its ligand programmed death ligand 1 (PD-L1) that they have been considered as cancer immunotherapy in recent years. In the latest studies, it have been demonstrated that several gut bacteria such as Akkermansia muciniphila, Bifidobacterium spp., Faecalibacterium spp., and Bacteroides fragilis have the regulatory effects on PD-1, PD-L1, and CTLA-4 blocked anticancer therapy outcome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA