Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pathogens ; 13(3)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38535538

RESUMO

Recent studies have suggested that periodontal disease and alterations in the oral microbiome may be associated with cognitive decline and Alzheimer's disease (AD) development. Here, we report a case-control study of oral microbiota diversity in AD patients compared to healthy seniors from Central Asia. We have characterized the bacterial taxonomic composition of the oral microbiome from AD patients (n = 64) compared to the healthy group (n = 71) using 16S ribosomal RNA sequencing. According to our results, the oral microbiome of AD has a higher microbial diversity, with an increase in Firmicutes and a decrease in Bacteroidetes in the AD group. LEfSe analysis showed specific differences at the genus level in both study groups. A region-based analysis of the oral microbiome compartment in AD was also performed, and specific differences were identified, along with the absence of differences in bacterial richness and on the functional side. Noteworthy findings demonstrated the decrease in periodontitis-associated bacteria in the AD group. Distinct differences were revealed in the distribution of metabolic pathways between the two study groups. Our study confirms that the oral microbiome is altered in AD. However, a comprehensive picture of the complete composition of the oral microbiome in patients with AD requires further investigation.

2.
Nutrients ; 15(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38068822

RESUMO

Age-related obesity significantly increases the risk of chronic diseases such as type 2 diabetes, cardiovascular diseases, hypertension, and certain cancers. The insulin-leptin axis is crucial in understanding metabolic disturbances associated with age-related obesity. Rho GTPase Cdc42 is a member of the Rho family of GTPases that participates in many cellular processes including, but not limited to, regulation of actin cytoskeleton, vesicle trafficking, cell polarity, morphology, proliferation, motility, and migration. Cdc42 functions as an integral part of regulating insulin secretion and aging. Some novel roles for Cdc42 have also been recently identified in maintaining glucose metabolism, where Cdc42 is involved in controlling blood glucose levels in metabolically active tissues, including skeletal muscle, adipose tissue, pancreas, etc., which puts this protein in line with other critical regulators of glucose metabolism. Importantly, Cdc42 plays a vital role in cellular processes associated with the insulin and leptin signaling pathways, which are integral elements involved in obesity development if misregulated. Additionally, a change in Cdc42 activity may affect senescence, thus contributing to disorders associated with aging. This review explores the complex relationships among age-associated obesity, the insulin-leptin axis, and the Cdc42 signaling pathway. This article sheds light on the vast molecular web that supports metabolic dysregulation in aging people. In addition, it also discusses the potential therapeutic implications of the Cdc42 pathway to mitigate obesity since some new data suggest that inhibition of Cdc42 using antidiabetic drugs or antioxidants may promote weight loss in overweight or obese patients.


Assuntos
Diabetes Mellitus Tipo 2 , Insulina , Humanos , Leptina , Diabetes Mellitus Tipo 2/metabolismo , Obesidade , Glucose
3.
Toxins (Basel) ; 15(3)2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36977124

RESUMO

Cyanobacteria produce a wide range of structurally diverse cyanotoxins and bioactive cyanopeptides in freshwater, marine, and terrestrial ecosystems. The health significance of these metabolites, which include genotoxic- and neurotoxic agents, is confirmed by continued associations between the occurrence of animal and human acute toxic events and, in the long term, by associations between cyanobacteria and neurodegenerative diseases. Major mechanisms related to the neurotoxicity of cyanobacteria compounds include (1) blocking of key proteins and channels; (2) inhibition of essential enzymes in mammalian cells such as protein phosphatases and phosphoprotein phosphatases as well as new molecular targets such as toll-like receptors 4 and 8. One of the widely discussed implicated mechanisms includes a misincorporation of cyanobacterial non-proteogenic amino acids. Recent research provides evidence that non-proteinogenic amino acid BMAA produced by cyanobacteria have multiple effects on translation process and bypasses the proof-reading ability of the aminoacyl-tRNA-synthetase. Aberrant proteins generated by non-canonical translation may be a factor in neuronal death and neurodegeneration. We hypothesize that the production of cyanopeptides and non-canonical amino acids is a more general mechanism, leading to mistranslation, affecting protein homeostasis, and targeting mitochondria in eukaryotic cells. It can be evolutionarily ancient and initially developed to control phytoplankton communities during algal blooms. Outcompeting gut symbiotic microorganisms may lead to dysbiosis, increased gut permeability, a shift in blood-brain-barrier functionality, and eventually, mitochondrial dysfunction in high-energy demanding neurons. A better understanding of the interaction between cyanopeptides metabolism and the nervous system will be crucial to target or to prevent neurodegenerative diseases.


Assuntos
Diamino Aminoácidos , Cianobactérias , Doenças Neurodegenerativas , Animais , Humanos , Toxinas de Cianobactérias , Ecossistema , Diamino Aminoácidos/metabolismo , Água Doce/microbiologia , Aminoácidos/metabolismo , Cianobactérias/metabolismo , Mamíferos
4.
Biogerontology ; 24(1): 27-46, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36598630

RESUMO

A small GTPase, Cdc42 is evolutionarily one of the most ancient members of the Rho family, which is ubiquitously expressed and involved in a wide range of fundamental cellular functions. The crucial role of Cdc42 includes regulation of the actin cytoskeleton, cell polarity, morphology and migration, endocytosis and exocytosis, cell cycle, and proliferation in many different cell types. Many studies have provided compelling yet contradicting evidence that Cdc42 dysregulation plays an important role in cellular and tissue aging. Furthermore, Cdc42 is a critical factor in the development and progression of aging-related pathologies, such as neurodegenerative and cardiovascular disorders, diabetes type 2, and aging-related disorders of the joints and bones, and the inhibition of the Cdc42 demonstrates potentially significant therapeutic and anti-aging effects in animal models of aging and disease. However, regulation of Cdc42 expression and activity is very complex and depends on many factors, such as the origin and complexity of the tissues, hormonal status, etc. Therefore, this review is focused on current advances in understanding the underlying cellular and molecular mechanisms associated with Cdc42 activity and regulation of senescence in different cell types since they may provide a foundation for novel therapeutic strategies and targeted drugs to reverse the aging process and treat aging-associated disorders.


Assuntos
Proteínas Monoméricas de Ligação ao GTP , Animais , Envelhecimento
5.
BMC Med Genomics ; 15(1): 262, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36527105

RESUMO

BACKGROUND: The role of adiponectin (ADIPOQ) in Alzheimer's disease (AD) has been documented, however, demonstrating controversial results. In this study, we investigated blood serum ADIPOQ levels, methylation of the adiponectin gene promoter, and adiponectin receptors (AdipoR1 and AdipoR2) expression in blood samples isolated from AD patients and healthy controls. METHODS: We performed a case-control study including 248 subjects (98 AD patients and 150 healthy controls); ADIPOQ serum levels, AdipoR1, and AdipoR2 levels in PBMC were measured by ELISA Kits, and ADIPOQ gene methylation was analyzed using methyl-specific PCR. RESULTS: Serum adiponectin levels were threefold higher in the AD group compared to the controls. We have also found a positive correlation between adiponectin and MMSE scores and high-density lipoprotein cholesterol (HDL-C) in AD patients. A significant difference in the proportion of methylation of the CpG sites at - 74 nt of the ADIPOQ gene promoter was detected in AD cases, and the levels of adiponectin in blood serum were significantly higher in methylated samples in the AD group compared to controls. The amount of AdipoR1 was significantly higher among AD subjects, while the expression of AdipoR2 did not vary between AD patients and controls. CONCLUSION: These findings may contribute to a deeper understanding of the etiological factors leading to the development of dementia and may serve as a basis for the development of predictive biomarkers of AD.


Assuntos
Doença de Alzheimer , Receptores de Adiponectina , Humanos , Receptores de Adiponectina/genética , Receptores de Adiponectina/metabolismo , Adiponectina/genética , Adiponectina/metabolismo , Metilação , Estudos de Casos e Controles , Doença de Alzheimer/genética , Leucócitos Mononucleares/metabolismo
6.
Front Pharmacol ; 13: 1021501, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36339595

RESUMO

The Genus Artemisia L. is one of the largest genera in the Asteraceae family growing wild over in Europe, North America, and Central Asia and has been widely used in folk medicine for the treatment of various ailments. Phytochemical and psychopharmacological studies indicated that the genus Artemisia extracts contain various antioxidant and anti-inflammatory compounds and possess antioxidant, anti-inflammatory, antimicrobial, antimalarial, and antitumor activity. Recently, increasing experimental studies demonstrated that many Artemisia extracts offer a great antiepileptic potential, which was attributed to their bioactive components via various mechanisms of action. However, detailed literature on the antiepileptic properties of the genus Artemisia and its mechanism of action is segregated. In this review, we tried to gather the detailed neuroprotective and antiepileptic properties of the genus Artemisia and its possible underlying mechanisms. In this respect, 63 articles were identified in the PubMed and Google scholars databases, from which 18 studies were examined based on the pharmacological use of the genus Artemisia species in epilepsy. The genus Artemisia extracts have been reported to possess antioxidant, anti-inflammatory, neurotransmitter-modulating, anti-apoptotic, anticonvulsant, and pro-cognitive properties by modulating oxidative stress caused by mitochondrial ROS production and an imbalance of antioxidant enzymes, by protecting mitochondrial membrane potential required for ATP production, by upregulating GABA-A receptor and nACh receptor activities, and by interfering with various anti-inflammatory and anti-apoptotic signaling pathways, such as mitochondrial apoptosis pathway, ERK/CREB/Bcl-2 pathway and Nrf2 pathway. This review provides detailed information about some species of the genus Artemisia as potential antiepileptic agents. Hence, we recommend further investigations on the purification and identification of the most biological effective compounds of Artemisia and the mechanisms of their action to cure epilepsy and other neurological diseases.

7.
Sci Rep ; 12(1): 15115, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36068280

RESUMO

We have investigated the diversity and composition of gut microbiotas isolated from AD (Alzheimer's disease) patients (n = 41) and healthy seniors (n = 43) from Nur-Sultan city (Kazakhstan). The composition of the gut microbiota was characterized by 16S ribosomal RNA sequencing. Our results demonstrated significant differences in bacterial abundance at phylum, class, order, and genus levels in AD patients compared to healthy aged individuals. Relative abundance analysis has revealed increased amount of taxa belonging to Acidobacteriota, Verrucomicrobiota, Planctomycetota and Synergistota phyla in AD patients. Among bacterial genera, microbiotas of AD participants were characterized by a decreased amount of Bifidobacterium, Clostridia bacterium, Castellaniella, Erysipelotrichaceae UCG-003, Roseburia, Tuzzerella, Lactobacillaceae and Monoglobus. Differential abundance analysis determined enriched genera of Christensenellaceae R-7 group, Prevotella, Alloprevotella, Eubacterium coprostanoligenes group, Ruminococcus, Flavobacterium, Ohtaekwangia, Akkermansia, Bacteroides sp. Marseille-P3166 in AD patients, whereas Levilactobacillus, Lactiplantibacillus, Tyzzerella, Eubacterium siraeum group, Monoglobus, Bacteroides, Erysipelotrichaceae UCG-003, Veillonella, Faecalibacterium, Roseburia, Haemophilus were depleted. We have also found correlations between some bacteria taxa and blood serum biochemical parameters. Adiponectin was correlated with Acidimicrobiia, Faecalibacterium, Actinobacteria, Oscillospiraceae, Prevotella and Christensenellaceae R-7. The Christensenellaceae R-7 group and Acidobacteriota were correlated with total bilirubin, while Firmicutes, Acidobacteriales bacterium, Castellaniella alcaligenes, Lachnospiraceae, Christensenellaceae and Klebsiella pneumoniae were correlated with the level of CRP in the blood of AD patients. In addition, we report the correlations found between disease severity and certain fecal bacteria. This is the first reported study demonstrating gut microbiota alterations in AD in the Central Asian region.


Assuntos
Doença de Alzheimer , Microbioma Gastrointestinal , Microbiota , Idoso , Bactérias/genética , Bacteroides/genética , Faecalibacterium/genética , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Humanos , Cazaquistão , RNA Ribossômico 16S/genética
8.
Antioxidants (Basel) ; 10(11)2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34829685

RESUMO

There are numerous publications demonstrating that plant polyphenols can reduce oxidative stress and inflammatory processes in the brain. In the present study we have investigated the neuroprotective effect of plant extract isolated from the roots of L. gmelinii since it contains a rich source of polyphenols and other biologically active compounds. We have applied an oxidative and inflammatory model induced by NMDA, H2O2, and TNF-α in human primary neurons and astrocytes, and mouse cerebral endothelial cell (CECs) line in vitro. The levels of ROS generation, NADPH oxidase activation, P-selectin expression, and activity of ERK1/2 were evaluated by quantitative immunofluorescence analysis, confocal microscopy, and MAPK assay. In vivo, sensorimotor functions in rats with middle cerebral artery occlusion (MCAO) were assessed. In neurons NMDA induced overproduction of ROS, in astrocytes TNF-α initiated ROS generation, NADPH oxidase activation, and phosphorylation of ERK1/2. In CECs, the exposure by TNF-α induced oxidative stress and triggered the accumulation of P-selectin on the surface of the cells. In turn, pre-treatment of the cells with the extract of L. gmelinii suppressed oxidative stress in all cell types and pro-inflammatory responses in astrocytes and CECs. In vivo, the treatment with L. gmelinii extract improved motor activity in rats with MCAO.

9.
Bioengineering (Basel) ; 7(4)2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33053753

RESUMO

Osteoporosis is a progressive skeletal disease characterized by reduced bone density leading to bone fragility and an elevated risk of bone fractures. In osteoporotic conditions, decrease in bone density happens due to the augmented osteoclastic activity and the reduced number of osteoblast progenitor cells (mesenchymal stem cells, MSCs). We investigated a new method of cell therapy with membrane-engineered MSCs to restore the osteoblast progenitor pool and to inhibit osteoclastic activity in the fractured osteoporotic bones. The primary active sites of the polymer are the N-hydroxysuccinimide and bisphosphonate groups that allow the polymer to covalently bind to the MSCs' plasma membrane, target hydroxyapatite molecules on the bone surface and inhibit osteolysis. The therapeutic utility of the membrane-engineered MSCs was investigated in female rats with induced estrogen-dependent osteoporosis and ulnar fractures. The analysis of the bone density dynamics showed a 27.4% and 21.5% increase in bone density at 4 and 24 weeks after the osteotomy of the ulna in animals that received four transplantations of polymer-modified MSCs. The results of the intravital observations were confirmed by the post-mortem analysis of histological slices of the fracture zones. Therefore, this combined approach that involves polymer and cell transplantation shows promise and warrants further bio-safety and clinical exploration.

10.
Cell Transplant ; 29: 963689720956956, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32885682

RESUMO

Pericytes possess high multipotent features and cell plasticity, and produce angiogenic and neurotrophic factors that indicate their high regenerative potential. The aim of this study was to investigate whether transplantation of adipose-derived pericytes can improve functional recovery and neurovascular plasticity after ischemic stroke in rats. Rat adipose-derived pericytes were isolated from subcutaneous adipose tissue by fluorescence-activated cell sorting. Adult male Wistar rats were subjected to 90 min of middle cerebral artery occlusion followed by intravenous injection of rat adipose-derived pericytes 24 h later. Functional recovery evaluations were performed at 1, 7, 14, and 28 days after injection of rat adipose-derived pericytes. Angiogenesis and neurogenesis were examined in rat brains using immunohistochemistry. It was observed that intravenous injection of adipose-derived pericytes significantly improved recovery of neurological function in rats with stroke compared to phosphate-buffered saline-treated controls. Immunohistochemical analysis revealed that the number of blood capillaries was significantly increased along the ischemic boundary zone of the cortex and striatum in stroke rats treated with adipose-derived pericytes. In addition, treatment with adipose-derived pericytes increased the number of doublecortin positive neuroblasts. Our data suggest that transplantation of adipose-derived pericytes can significantly improve the neurologic status and contribute to neurovascular remodeling in rats after ischemic stroke. These data provide a new insight for future cell therapies that aim to treat ischemic stroke patients.


Assuntos
Tecido Adiposo/citologia , AVC Isquêmico/fisiopatologia , AVC Isquêmico/terapia , Pericitos/transplante , Animais , Linhagem da Célula , Forma Celular , Células Clonais , Proteína Duplacortina , Infarto da Artéria Cerebral Média/patologia , AVC Isquêmico/patologia , Masculino , Neovascularização Fisiológica , Neurogênese , Ratos Wistar
11.
Oxid Med Cell Longev ; 2020: 7145656, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32655772

RESUMO

Skin aging has been associated with a higher dietary intake of carbohydrates, particularly glucose and galactose. In fact, the carbohydrates are capable of damaging the skin's vital components through nonenzymatic glycation, the covalent attachment of sugar to a protein, and subsequent production of advanced glycation end products (AGEs). This review is focused on the role of D-galactose in the development of skin aging and its relation to oxidative stress. The interest in this problem was dictated by recent findings that used in vitro and in vivo models. The review highlights the recent advances in the underlying molecular mechanisms of D-galactose-mediated cell senescence and cytotoxicity. We have also proposed the possible impact of galactosemia on skin aging and its clinical relevance. The understanding of molecular mechanisms of skin aging mediated by D-galactose can help dermatologists optimize methods for prevention and treatment of skin senescence and aging-related skin diseases.


Assuntos
Galactose/toxicidade , Estresse Oxidativo/fisiologia , Envelhecimento da Pele/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Senescência Celular/efeitos dos fármacos , Colágeno/metabolismo , Galactosemias/etiologia , Galactosemias/metabolismo , Galactosemias/patologia , Galactosemias/terapia , Glicosilação , Humanos , Estresse Oxidativo/efeitos dos fármacos , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/patologia , Envelhecimento da Pele/patologia
12.
Regen Med ; 15(4): 1579-1594, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32297546

RESUMO

In pathological bone conditions (e.g., osteoporotic fractures or critical size bone defects), increasing the pool of osteoblast progenitor cells is a promising therapeutic approach to facilitate bone healing. Since mesenchymal stem cells (MSCs) give rise to the osteogenic lineage, a number of clinical trials investigated the potential of MSCs transplantation for bone regeneration. However, the engraftment of transplanted cells is often hindered by insufficient oxygen and nutrients supply and the tendency of MSCs to home to different sites of the body. In this review, we discuss various approaches of MSCs transplantation for bone regeneration including scaffold and hydrogel constructs, genetic modifications and surface engineering of the cell membrane aimed to improve homing and increase cell viability, proliferation and differentiation.


Assuntos
Doenças Ósseas/terapia , Regeneração Óssea , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Osteoblastos/citologia , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Humanos
13.
Artigo em Inglês | MEDLINE | ID: mdl-32257964

RESUMO

Gut microbiome is a community of microorganisms in the gastrointestinal tract. These bacteria have a tremendous impact on the human physiology in healthy individuals and during an illness. Intestinal microbiome can influence one's health either directly by secreting biologically active substances such as vitamins, essential amino acids, lipids et cetera or indirectly by modulating metabolic processes and the immune system. In recent years considerable information has been accumulated on the relationship between gut microbiome and brain functions. Moreover, significant quantitative and qualitative changes of gut microbiome have been reported in patients with Alzheimer's disease. On the other hand, gut microbiome is highly sensitive to negative external lifestyle aspects, such as diet, sleep deprivation, circadian rhythm disturbance, chronic noise, and sedentary behavior, which are also considered as important risk factors for the development of sporadic Alzheimer's disease. In this regard, this review is focused on analyzing the links between gut microbiome, modern lifestyle, aging, and Alzheimer's disease.


Assuntos
Doença de Alzheimer , Microbioma Gastrointestinal , Envelhecimento , Humanos , Sistema Imunitário , Estilo de Vida
14.
Neuroscience ; 408: 46-57, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30953670

RESUMO

Amyloid beta peptide (Aß) is implicated in the development of pathological reactions associated with Alzheimer's disease (AD), such as oxidative stress, neuro-inflammation and death of brain cells. Current pharmacological approaches to treat AD are not able to control the deposition of Aß and suppression of Aß-induced cellular response. There is a growing body of evidence that exposure to radiofrequency electromagnetic field (RF-EMF) causes a decrease of beta-amyloid deposition in the brains and provides cognitive benefits to Alzheimer's Tg mice. Herein, we investigated the effects of mobile phone radiofrequency EMF of 918 MHz on reactive oxygen species (ROS) formation, mitochondrial membrane potential (MMP), activity of NADPH-oxidase, and phosphorylation of p38MAPK and ERK1/2 kinases in human and rat primary astrocytes in the presence of Aß42 and H2O2. Our data demonstrate that EMF is able to reduce Aß42- and H2O2-induced cellular ROS, abrogate Aß42-induced production of mitochondrial ROS and the co-localization between the cytosolic (p47-phox) and membrane (gp91-phox) subunits of NADPH oxidase, while increasing MMP, and inhibiting H2O2-induced phosphorylation of p38MAPK and ERK1/2 in primary astrocytes. Yet, EMF was not able to modulate alterations in the phosphorylation state of the MAPKs triggered by Aß42. Our findings provide an insight into the mechanisms of cellular and molecular responses of astrocytes on RF-EMF exposure and indicate the therapeutic potential of RF-EMF for the treatment of Alzheimer's disease.


Assuntos
Peptídeos beta-Amiloides/farmacologia , Astrócitos/efeitos da radiação , Campos Eletromagnéticos , Estresse Oxidativo/efeitos da radiação , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Telefone Celular , Humanos , Peróxido de Hidrogênio/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos da radiação , Estresse Oxidativo/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Fosforilação/efeitos da radiação , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação
15.
ACS Chem Neurosci ; 10(1): 209-215, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30399318

RESUMO

Cerebral amyloid angiopathy (CAA), a condition depicting cerebrovascular accumulation of amyloid ß-peptide (Aß), is a common pathological manifestation in Alzheimer's disease (AD). In this study, we investigated the effects of Azelnidipine (ALP), a dihydropyridine calcium channel blocker known for its treatment of hypertension, on oligomeric Aß (oAß)-induced calcium influx and its downstream pathway in immortalized mouse cerebral endothelial cells (bEND3). We found that ALP attenuated oAß-induced calcium influx, superoxide anion production, and phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and calcium-dependent cytosolic phospholipase A2 (cPLA2). Both ALP and cPLA2 inhibitor, methylarachidonyl fluorophosphate (MAFP), suppressed oAß-induced translocation of NFκB p65 subunit to nuclei, suggesting that cPLA2 activation and calcium influx are essential for oAß-induced NFκB activation. In sum, our results suggest that calcium channel blocker could be a potential therapeutic strategy for suppressing oxidative stress and inflammatory responses in Aß-stimulated microvasculature in AD.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Ácido Azetidinocarboxílico/análogos & derivados , Bloqueadores dos Canais de Cálcio/farmacologia , Di-Hidropiridinas/farmacologia , Células Endoteliais/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo/fisiologia , Animais , Ácido Azetidinocarboxílico/farmacologia , Linhagem Celular Transformada , Angiopatia Amiloide Cerebral/metabolismo , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Células Endoteliais/efeitos dos fármacos , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
16.
Int J Mol Sci ; 19(6)2018 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-29882812

RESUMO

Chemotherapeutic drugs target a physiological differentiating feature of cancer cells as they tend to actively proliferate more than normal cells. They have well-known side-effects resulting from the death of highly proliferative normal cells in the gut and immune system. Cancer treatment has changed dramatically over the years owing to rapid advances in oncology research. Developments in cancer therapies, namely surgery, radiotherapy, cytotoxic chemotherapy and selective treatment methods due to better understanding of tumor characteristics, have significantly increased cancer survival. However, many chemotherapeutic regimes still fail, with 90% of the drug failures in metastatic cancer treatment due to chemoresistance, as cancer cells eventually develop resistance to chemotherapeutic drugs. Chemoresistance is caused through genetic mutations in various proteins involved in cellular mechanisms such as cell cycle, apoptosis and cell adhesion, and targeting those mechanisms could improve outcomes of cancer therapy. Recent developments in cancer treatment are focused on combination therapy, whereby cells are sensitized to chemotherapeutic agents using inhibitors of target pathways inducing chemoresistance thus, hopefully, overcoming the problems of drug resistance. In this review, we discuss the role of cell cycle, apoptosis and cell adhesion in cancer chemoresistance mechanisms, possible drugs to target these pathways and, thus, novel therapeutic approaches for cancer treatment.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/uso terapêutico , Moléculas de Adesão Celular/metabolismo , Humanos , Terapia de Alvo Molecular/métodos , Neoplasias/metabolismo , Neoplasias/patologia , Transdução de Sinais/efeitos dos fármacos , Fatores de Crescimento Transformadores/metabolismo
17.
Biogerontology ; 19(3-4): 287-301, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29804242

RESUMO

Mesenchymal stem cells (MSCs) represent a promising cell source for cellular therapy and tissue engineering and are currently being tested in a number of clinical trials for various diseases. However, like other somatic cells, MSCs age, and this senescence is accompanied by a progressive decline in stem cell function. Several lines of evidence suggest a role for the Rho family GTPase Cdc42 activity in cellular senescence processes. In the present study, we have examined aging-associated Cdc42 activity in rat adipose-derived mesenchymal stem cells (ADMSCs) and the consequences of pharmacological inhibition of Cdc42 in ADMSCs from aged rats. We demonstrate that ADMSCs show a decreased rate of cell growth and a decreased ability to differentiate into chrodrogenic, osteogenic and adipogenic cell lineages as a function of rat age. This is accompanied with an increased staining for SA-ß-Gal activity and increased levels of Cdc42 bound to GTP. Treatment of ADMSCs from 24-month old rats with three Cdc42 inhibitors significantly increased proliferation rates, decreased SA-ß-Gal staining, and reduced Cdc42-GTP. The Cdc42 inhibitor CASIN increased adipogenic and osteogenic differentiation potential in ADMSCs from 24-month old rats, and decreased the levels of radical oxygen species (ROS), p16INK4a levels, F-actin, and the activity of the ERK1/2 and JNK signaling pathways that were all elevated in these cells. These data suggest that ADMSCs show increased rates of senescence as rats age that appear to be due to elevated Cdc42 activity. Thus, Cdc42 plays important roles in MSC senescence and differentiation potential, and pharmacological reduction of Cdc42 activity can, at least partially, rejuvenate aged MSCs.


Assuntos
Proliferação de Células , Senescência Celular , Células-Tronco Mesenquimais/fisiologia , Proteína cdc42 de Ligação ao GTP , Adipogenia/fisiologia , Animais , Benzamidas/farmacologia , Diferenciação Celular , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Senescência Celular/fisiologia , Inibidores Enzimáticos/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Osteogênese/fisiologia , Pirazóis/farmacologia , Ratos , Transdução de Sinais , Sulfonamidas/farmacologia , Tioureia/análogos & derivados , Tioureia/farmacologia , Proteína cdc42 de Ligação ao GTP/antagonistas & inibidores , Proteína cdc42 de Ligação ao GTP/metabolismo
18.
Med Eng Phys ; 38(9): 877-84, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27062487

RESUMO

Autologous red blood cell ghosts (RBC ghosts) can carry cytokines to the sites of inflammation. The targeting moiety of the RBC ghosts is associated with the nature of purulent inflammation, where the erythrocytes are phagocyted and encapsulated drugs are released. In the present study we have investigated the healing potential of RBC ghosts loaded with cytokine IL-1ß and antibiotic. Additionally, the pharmacokinetic properties of RBC ghosts loaded with IL-1ß were studied. 35 Male Wistar rats (250-300g) were used in the pharmacokinetic study and in a wound infection model where a suspension of Staphylococcus aureus was placed into a surgical cut of the skin and subcutaneous tissue in the femoral region. In order to monitor progression of the wound repair processes, wound swabs or aspiration biopsies were taken for analyses on the 1st-6th days. Wound repair dynamics assessment was based on suppression of S. aureus growth, signs of pain, time of disappearance of pus and infiltration around the wound. Visual observations, as well as microbiological and cytological analysis of wound exudates demonstrated a significant acceleration of healing processes in a group of animals treated with a local injection of IL-1ß and ceftriaxone encapsulated into RBC ghosts when compared to the animals treated either with a local or IM injection of free drugs. For the pharmacokinetic study, single IV injections of either free or encapsulated IL-1ß were made and the concentration of IL-1ß in serum samples and tissue homogenates were determined. Encapsulation in RBC ghosts improved pharmacokinetic profiles of IL-1ß by increasing the half-life, reducing its clearance, and increasing the deposition of the drug in the liver, spleen and lungs. These data suggest that RBC ghosts are effective drug carriers for targeted delivery of cytokines to the sites of inflammation, and have a potential for improving the treatment outcomes of purulent diseases.


Assuntos
Portadores de Fármacos/metabolismo , Eritrócitos/metabolismo , Infecção dos Ferimentos/tratamento farmacológico , Animais , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Interleucina-1beta/metabolismo , Interleucina-1beta/farmacocinética , Interleucina-1beta/farmacologia , Interleucina-1beta/uso terapêutico , Masculino , Ratos , Ratos Wistar , Distribuição Tecidual , Cicatrização/efeitos dos fármacos , Infecção dos Ferimentos/metabolismo , Infecção dos Ferimentos/fisiopatologia
19.
Cent Asian J Glob Health ; 5(1): 261, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-29138734

RESUMO

INTRODUCTION: Despite the significant number of research institutions and rich scientific heritage, published research from Central Asia (Kazakhstan, Uzbekistan, Kyrgyzstan, Tajikistan, and Turkmenistan) is traditionally underrepresented in international scientific literature. The goal of this paper was to analyze publication patterns in Central Asian countries, and to explore the factors that contributed to the publication productivity in Kazakhstan. METHODS: Publication productivity was evaluated using data generated by the SCImago Journal & Country Rank over the period of 1996-2014 for all of the 15 former Soviet Union Republics for all subject categories. Country specific data, including total population, gross domestic product (GDP) per capita, research and development (R&D) expenditure (% of GDP), number of reserchers (per million people), was abstracted from World Bank data. ANOVA and ANCOVA analyses compared the mean number of publications among Central Asian countries. Separate analyses was done for publication patterns in the health sciences. Multiple comparisons were performed using Tukey method. RESULTS: The analysis of publication productivity showed significant discrepancies in the number of published documents among the Central Asian countries. Kazakhstan demonstrated a significant increase in the number of published documents in the period of 1996-2014, mainly in the areas of natural and multidisciplinary sciences. Our analyses also showed that the number of publications are siginicantly associated with GDP and population size. CONCLUSIONS: We identified large gaps in publication productivity among the Central Asian countries. The association between publication rate with GDP and population size indicates there is a need to adjust for these factors when planning research policy.

20.
Front Neurosci ; 9: 186, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26074758

RESUMO

Cellular membrane alterations are commonly observed in many diseases, including Alzheimer's disease (AD). Membrane biophysical properties, such as membrane molecular order, membrane fluidity, organization of lipid rafts, and adhesion between membrane and cytoskeleton, play an important role in various cellular activities and functions. While membrane biophysics impacts a broad range of cellular pathways, this review addresses the role of membrane biophysics in amyloid-ß peptide aggregation, Aß-induced oxidative pathways, amyloid precursor protein processing, and cerebral endothelial functions in AD. Understanding the mechanism(s) underlying the effects of cell membrane properties on cellular processes should shed light on the development of new preventive and therapeutic strategies for this devastating disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA