Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Photochem Photobiol Sci ; 18(11): 2782-2791, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31620765

RESUMO

The development of water oxidation catalysts based on Earth-abundant metals that can function at neutral pH remains a basic chemical challenge. Here, we report that salophen complexes with Ni(ii), Cu(ii), and Mn(ii) can catalyse photochemical water oxidation to molecular oxygen in the presence of [Ru(bpy)3]2+ as a photosensitizer and Na2S2O8 as an oxidant in phosphate buffer of pH 7.0. Experimental results including CV, SEM, EDS, ESI-MS, and DLS measurements on the metal salophen complex-catalysed water oxidation to oxygen suggest that the catalytic activity of the catalysts is molecular in origin.

2.
Data Brief ; 18: 1952-1961, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29904701

RESUMO

Industrial dye effluents with low biodegradability are highly toxic and carcinogenic on both human and aquatic lives, thus they are detrimental to the biodiversity of environment. Herein, this data set presents the potential of cationic Nickel based MOFs in the adsorption of charged and neutral dye molecules. Data set include a concise description of experimental conditions for the synthesis of imidazolium ligands, 1,3-bis(4-carboxyphenyl)imidazolium chloride (H2L+Cl-) and 1,3-bis(3,5-dicarboxyphenyl)imidazolium chloride (H4L+Cl-), and MOFs. The data show that the two Nickel MOFs, 1 and 2, synthesized from imidazolium ligands are cationic frameworks. The adsorption and analysis data show that the cationic MOFs exhibit efficient adsorptive removal capacity for positively charged dyes, adsorbing up to 81.08% and 98.65% of Methyl orange and Congo red, respectively.

3.
J Colloid Interface Sci ; 519: 214-223, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29501993

RESUMO

The positively charged azolium moieties make imidazolium linker an ideal linker for the construction of cationic metal-organic frameworks because the ligand induces cationic environments in the frameworks. Therefore, we employed two imidazolium ligands, 1,3-bis(4-carboxyphenyl)imidazolium chloride (H2L+Cl¯) and 1,3-bis(3,5-dicarboxyphenyl)imidazolium chloride (H4L+Cl¯), to synthesize two nickel azolium-based MOFs, 1 and 2. The as-synthesis MOFs were characterized by PXRD, TGA, FE-SEM, HR-TEM, FTIR and BET measurements. By applying 1 and 2 in liquid phase adsorption of charged molecules of dyes, they successfully exhibit remarkable efficiency for adsorptive removal of anionic dyes, Methyl orange (MO), Congo red (CR), and Orange II sodium salt (OS), from aqueous solution. The framework proves efficient in photocatalytic degradation of anionic dye. Furthermore, in the gaseous phase adsorption, 1 and 2 selectively adsorb CO2 over CH4 due to the higher quadrupole moment of CO2. Overall, the results show that azolium-based MOFs have potential applications for adsorptive removal of charged organic contaminants from both aqueous and gaseous environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA