Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Phys Chem C Nanomater Interfaces ; 127(31): 15435-15442, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37706058

RESUMO

We present an abinitio study of the quasi-2D layered perovskite Sr3Hf2O7 compound, performed within the framework of the density functional theory and lattice dynamics analysis. At high temperatures, this compound takes a I4/mmm centrosymmetric structure (S.G. n. 139); as the temperature is lowered, the symmetry is broken into other intermediate polymorphs before reaching the ground-state structure, which is the Cmc21 ferroelectric phase (S.G. n. 36). One of these intermediate polymorphs is the Ccce structural phase (S.G. n. 68). Additionally, we have probed the C2/c system (S.G n. 15), which was obtained by following the atomic displacements corresponding to the eigenvectors of the imaginary frequency mode localized at the Γ-point of the Ccce phase. By observing the enthalpies at low pressures, we found that the Cmc21 phase is thermodynamically the most stable. Our results show that the I4/mmm and C2/c phases never stabilize in the 0-20 GPa range of pressure values. On the other hand, the Ccce phase becomes energetically more stable at around 17 GPa, surpassing the Cmc21 structure. By considering the effect of entropy and the constant-volume free energies, we observe that the Cmc21 polymorph is energetically the most stable phase at low temperature; however, at 350 K, the Ccce system becomes the most stable. By probing the volume-dependent free energies at 19 GPa, we see that Ccce is always the most stable phase between the two structures and also throughout the studied temperature range. When analyzing the phonon dispersion frequencies, we conclude that the Ccce system becomes dynamically stable only around 19-20 GPa and that the Cmc21 phase is metastable up to 30 GPa.

2.
J Phys Chem A ; 114(44): 11977-83, 2010 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-20958009

RESUMO

We performed a first principles total energy investigation on the structural, electronic, and vibrational properties of adamantane molecules, functionalized with amine and ethanamine groups. We computed the vibrational signatures of amantadine and rimantadine isomers with the functional groups bonded to different carbon sites. By comparing our results with recent infrared and Raman spectroscopic data, we discuss the possible presence of different isomers in experimental samples.

3.
J Phys Condens Matter ; 22(31): 315303, 2010 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-21399359

RESUMO

We performed a first-principles investigation on the structural, electronic and optical properties of crystals made of chemically functionalized adamantane molecules. Several molecular building blocks, formed by boron and nitrogen substitutional functionalizations, were considered to build zinc blende and wurtzite crystals, and the resulting structures presented large bulk moduli and cohesive energies, wide and direct bandgaps, and low dielectric constants (low-κ materials). Those properties provide stability for such structures up to room temperature, superior to those of typical molecular crystals. This indicates a possible road map for crystal engineering using functionalized diamondoids, with potential applications ranging from space filling between conducting wires in nanodevices to nano-electromechanical systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA