Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Toxins (Basel) ; 15(9)2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37755986

RESUMO

Diabetic neuropathic pain is one of the complications that affect a wide variety of the diabetic population and is often difficult to treat. Only a small number of patients experience pain relief, which usually comes with onerous side effects and low levels of satisfaction. The search for new analgesic drugs is necessary, given the limitations that current drugs present. Combining drugs to treat neuropathic pain has been attracting interest to improve their efficacy compared to single-drug monotherapies while also reducing dose sizes to minimize side effects. The aim of our study was to verify the antinociceptive effect of a synthetic peptide, PnPP-15, alone and combined with pregabalin, in male Swiss diabetic mice using the von Frey method. PnPP-15 is a synthetic peptide derived from PnPP19, a peptide representing a discontinuous epitope of the primary structure of the toxin PnTx2-6 from the venom of the spider Phoneutria nigriventer. The antinociceptive activity of both compounds was dose-dependent and showed synergism, which was verified by isobolographic analysis. Treatment with PnPP-15 did not cause spontaneous or forced motor changes and did not cause any damage or signs of toxicity in the analyzed organs (pancreas, lung, heart, kidney, brain, or liver). In conclusion, PnPP-15 is a great candidate for an analgesic drug against neuropathic pain caused by diabetes and exerts a synergistic effect when combined with pregabalin, allowing for even more efficient treatment.


Assuntos
Diabetes Mellitus Experimental , Neuralgia , Venenos de Aranha , Humanos , Ratos , Camundongos , Masculino , Animais , Pregabalina/farmacologia , Pregabalina/uso terapêutico , Ratos Wistar , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Venenos de Aranha/uso terapêutico , Venenos de Aranha/toxicidade , Venenos de Aranha/química , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Neuralgia/tratamento farmacológico
2.
Toxicon ; 195: 104-110, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33753115

RESUMO

This study investigated the effects of intravenous (iv) administration of recombinant Phα1ß toxin, pregabalin, and diclofenac by the intrathecal route using an animal model fibromyalgia (FM). The reserpine administration (0.25 mg/kg s. c) once daily for three consecutive days significantly induced hyperalgesia, immobility time, and sucrose consumption in mice on the 4th day. Reserpine caused hyperalgesia on the mechanical and thermal hyperalgesia on the 4th day was reverted by recombinant Phα1ß (0.2 mg/kg iv) and pregabalin (1.25 µmol/site i. t) treatments. In contrast, diclofenac (215 nmol/site i. t) was ineffective. Recombinant Phα1ß toxin, pregabalin, and diclofenac did not affect the depressive-like behavioural effect induced by reserpine on mice during the forced swim and sucrose consumption tests. The data confirmed the analgesic effect of the recombinant Phα1ß toxin administered intravenously in a fibromyalgia mouse model.


Assuntos
Fibromialgia , Venenos de Aranha/toxicidade , Administração Intravenosa , Analgésicos/uso terapêutico , Animais , Modelos Animais de Doenças , Fibromialgia/tratamento farmacológico , Hiperalgesia/tratamento farmacológico , Camundongos , Reserpina/uso terapêutico , Venenos de Aranha/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA