Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Extracell Vesicles ; 12(1): e12285, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36645092

RESUMO

Gram-negative bacteria form spherical blebs on their cell periphery, which later dissociate from the bacterial cell wall to form extracellular vesicles. These nano scale structures, known as outer membrane vesicles (OMVs), have been shown to promote infection and disease and can induce typical immune outputs in both mammal and plant hosts. To better understand the broad transcriptional change plants undergo following exposure to OMVs, we treated Arabidopsis thaliana (Arabidopsis) seedlings with OMVs purified from the Gram-negative plant pathogenic bacterium Xanthomonas campestris pv. campestris and performed RNA-seq analysis on OMV- and mock-treated plants at 2, 6 and 24 h post challenge. The most pronounced transcriptional shift occurred at the first two time points tested, as reflected by the number of differentially expressed genes and the average fold change. OMVs induce a major transcriptional shift towards immune system activation, upregulating a multitude of immune-related pathways including a variety of immune receptors. Comparing the response of Arabidopsis to OMVs and to purified elicitors, revealed that OMVs induce a similar suite of genes and pathways as single elicitors, however, pathways activated by OMVs and not by other elicitors were detected. Pretreating Arabidopsis plants with OMVs and subsequently infecting with a bacterial pathogen led to a significant reduction in pathogen growth. Mutations in the plant elongation factor receptor (EFR), flagellin receptor (FLS2), or the brassinosteroid-insensitive 1-associated kinase (BAK1) co-receptor, did not significantly affect the immune priming effect of OMVs. All together these results show that OMVs induce a broad transcriptional shift in Arabidopsis leading to upregulation of multiple immune pathways, and that this transcriptional change may facilitate resistance to bacterial infection.


Assuntos
Arabidopsis , Membrana Externa Bacteriana , Vesículas Extracelulares , Imunidade Vegetal , Arabidopsis/genética , Arabidopsis/microbiologia , Bactérias
2.
Phytopathology ; 113(5): 791-799, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36428243

RESUMO

'Candidatus Liberibacter solanacearum' is an insect-transmitted bacterium associated with several plant diseases. In the Mediterranean Basin, 'Ca. L. solanacearum' haplotype D is vectored by Bactericera trigonica and can severely infect carrot plants leading to abnormal growth phenotypes and significant yield losses. Insecticide applications are insufficient to suppress disease spread and damage, and additional means for disease control are needed. In the current study, we evaluated the resistance of 97 carrot accessions to the bacterial pathogen 'Ca. L. solanacearum' and its associated symptoms. Accessions (Western and Asian types) were first screened in two commercial carrot fields. We found that Western type accessions were less prone to develop disease symptoms in both fields and were less frequently visited by the insect vector in one field. Overall, 22 Asian and five Western accessions with significantly lower disease incidence compared with the commercial cultivar were found. These accessions were then inoculated with 'Ca. L. solanacearum' under controlled conditions and were assessed for disease incidence, insect oviposition, and bacterial relative titer. Five accessions (three Asian and two Western) had significantly lower disease incidence compared with the reference cultivar. Interestingly, disease incidence was not necessarily in line with insect oviposition or in planta bacterial titer, which may indicate that other, perhaps physiological, differences among the accessions may govern the susceptibility of plants to the disease. The resistant accessions found in this study could be used in future resistance breeding programs and to better understand the underlying mechanisms of resistance to 'Ca. L. solanacearum'.


Assuntos
Daucus carota , Hemípteros , Rhizobiaceae , Animais , Feminino , Liberibacter , Rhizobiaceae/genética , Daucus carota/microbiologia , Doenças das Plantas/microbiologia , Melhoramento Vegetal , Hemípteros/microbiologia , Insetos
3.
Phytopathology ; 112(1): 154-162, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34282951

RESUMO

A decade ago, shoot proliferation symptoms (i.e., witches' broom) in carrots were believed to be the cause of 'Candidatus Phytoplasma' and Spiroplasma infection, yet in recent years this association appeared to have weakened, and a closer association was found with the yet-unculturable, psyllid-transmitted Gram-negative bacterium 'Candidatus Liberibacter solanacearum'. In Israel, carrots are grown throughout the year, yet shoot proliferation symptoms tend to appear only in mature plants and mostly in late spring to early summer. We hypothesized that factors such as plant age, temperature, and vector load, which vary during the year, have a critical effect on symptom development and examined these factors under controlled conditions. Here we show that young carrot seedlings are as prone as older plants to develop shoot proliferation symptoms after 'Ca. L. solanacearum' inoculation. Surprisingly, we found that the local 'Ca. L. solanacearum' haplotype was extremely sensitive to constant temperature of 30°C, which led to a significant reduction in bacterial growth and symptom development compared with 18°C, which was very conducive to symptom development. We have also found that inoculations with 10 or 20 psyllids per plant results in faster symptom development compared with inoculations with two psyllids per plant; however, the difference between vector loads in disease progress rate was not significant. These data provide important insights to the effects of plant age, growth temperature, and vector load on 'Ca. L. solanacearum' and its associated symptoms and further strengthen the notion that 'Ca. L. solanacearum' is the main responsible agent for carrot witches' broom in Israel.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Daucus carota , Hemípteros , Rhizobiaceae , Animais , Proliferação de Células , Liberibacter , Doenças das Plantas , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA