Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(6): 112787, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38810650

RESUMO

Protein aggregation, which can sometimes spread in a prion-like manner, is a hallmark of neurodegenerative diseases. However, whether prion-like aggregates form during normal brain aging remains unknown. Here, we use quantitative proteomics in the African turquoise killifish to identify protein aggregates that accumulate in old vertebrate brains. These aggregates are enriched for prion-like RNA-binding proteins, notably the ATP-dependent RNA helicase DDX5. We validate that DDX5 forms aggregate-like puncta in the brains of old killifish and mice. Interestingly, DDX5's prion-like domain allows these aggregates to propagate across many generations in yeast. In vitro, DDX5 phase separates into condensates. Mutations that abolish DDX5 prion propagation also impair the protein's ability to phase separate. DDX5 condensates exhibit enhanced enzymatic activity, but they can mature into inactive, solid aggregates. Our findings suggest that protein aggregates with prion-like properties form during normal brain aging, which could have implications for the age-dependency of cognitive decline.


Assuntos
Envelhecimento , Encéfalo , Príons , Agregados Proteicos , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Envelhecimento/metabolismo , Príons/metabolismo , Camundongos , RNA Helicases DEAD-box/metabolismo , Humanos
2.
Heliyon ; 10(7): e28320, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38586362

RESUMO

Background and objective: The leaky gut syndrome is characterized by an intestinal hyperpermeability observed in multiple chronic disorders. Alterations of the gut barrier are associated with translocation of bacterial components increasing inflammation, oxidative stress and eventually dysfunctions of cellular interactions at the origin pathologies. Therapeutic and/or preventive approaches have to focus on the identification of novel targets to improve gut homeostasis. In this context, this study aims to identify the role of PERMEAPROTECT + TOLERANE©, known as PERMEA, a food complement composed of a combination of factors (including l-Glutamine) known to improve gut physiology. Methods: We tested the effects of PERMEA or l-Glutamine alone (as reference) on gut permeability (FITC dextran method, expression of tight junctions) and its inflammatory/oxidative consequences (cytokines and redox assays, RT-qPCR) in a co-culture of human cells (peripheral blood mononuclear cells and intestinal epithelial cells) challenged with TNFα. Results: PERMEA prevented intestinal hyperpermeability induced by inflammation. This was linked with its antioxidant and immunomodulatory properties showing a better efficacity than l-Glutamine alone on several parameters including permeability, global antioxidant charge and production of cytokines. Conclusion: PERMEA is more efficient to restore intestinal physiology, reinforcing the concept that combination of food constituents could be used to prevent the development of numerous diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA