Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(6): e0304497, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38870181

RESUMO

Tomato mosaic virus (ToMV), an economically important virus that affects a wide range of crops, is highly contagious, and its transmission is mediated by mechanical means, and through contaminated seeds or planting materials, making its management challenging. To contain its wide distribution, early and accurate detection of infection is required. A survey was conducted between January and May, 2023 in major tomato growing counties in Kenya, namely, Baringo, Kajiado, Kirinyaga and Laikipia, to establish ToMV disease incidence and to collect samples for optimization of the reverse transcription loop-mediated isothermal amplification assay (RT-LAMP) assay. A RT-LAMP assay, utilizing primers targeting the coat protein, was developed and evaluated for its performance. The method was able to detect ToMV in tomato samples within 4:45 minutes, had a 1,000-fold higher sensitivity than conventional reverse transcription polymerase chain reaction (RT-PCR) method and was specific to ToMV. Furthermore, the practical applicability of the assay was assessed using tomato samples and other solanaecous plants. The assay was able to detect the virus in 14 tomato leaf samples collected from the field, compared to 11 samples detected by RT-PCR, further supporting the greater sensitivity of the assay. To make the assay more amenable for on-site ToMV detection, a quick-extraction method based on alkaline polyethylene glycol buffer was evaluated, which permitted the direct detection of the target virus from crude leaf extracts. Due to its high sensitivity, specificity and rapidity, the RT-LAMP method could be valuable for field surveys and quarantine inspections towards a robust management of ToMV infections.


Assuntos
Técnicas de Amplificação de Ácido Nucleico , Doenças das Plantas , Solanum lycopersicum , Tobamovirus , Técnicas de Amplificação de Ácido Nucleico/métodos , Solanum lycopersicum/virologia , Doenças das Plantas/virologia , Tobamovirus/genética , Tobamovirus/isolamento & purificação , Transcrição Reversa , Sensibilidade e Especificidade , Quênia , RNA Viral/genética , RNA Viral/análise , RNA Viral/isolamento & purificação , Técnicas de Diagnóstico Molecular
2.
Front Plant Sci ; 14: 1250105, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37915512

RESUMO

Cassava is a major crop in Sub-Saharan Africa, where it is grown primarily by smallholder farmers. Cassava production is constrained by Cassava mosaic disease (CMD), which is caused by a complex of cassava mosaic begomoviruses (CMBs). A previous study showed that SEGS-1 (sequences enhancing geminivirus symptoms), which occurs in the cassava genome and as episomes during viral infection, enhances CMD symptoms and breaks resistance in cassava. We report here that SEGS-1 also increases viral disease severity in Arabidopsis thaliana plants that are co-inoculated with African cassava mosaic virus (ACMV) and SEGS-1 sequences. Viral disease was also enhanced in Arabidopsis plants carrying a SEGS-1 transgene when inoculated with ACMV alone. Unlike cassava, no SEGS-1 episomal DNA was detected in the transgenic Arabidopsis plants during ACMV infection. Studies using Nicotiana tabacum suspension cells showed that co-transfection of SEGS-1 sequences with an ACMV replicon increases viral DNA accumulation in the absence of viral movement. Together, these results demonstrated that SEGS-1 can function in a heterologous host to increase disease severity. Moreover, SEGS-1 is active in a host genomic context, indicating that SEGS-1 episomes are not required for disease enhancement.

3.
Phytopathology ; 113(9): 1661-1676, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37486077

RESUMO

Plant viruses infect a wide range of commercially important crop plants and cause significant crop production losses worldwide. Numerous alterations in plant physiology related to the reprogramming of gene expression may result from viral infections. Although conventional integrated pest management-based strategies have been effective in reducing the impact of several viral diseases, continued emergence of new viruses and strains, expanding host ranges, and emergence of resistance-breaking strains necessitate a sustained effort toward the development and application of new approaches for virus management that would complement existing tactics. RNA interference-based techniques, and more recently, clustered regularly interspaced short palindromic repeats (CRISPR)-based genome editing technologies have paved the way for precise targeting of viral transcripts and manipulation of viral genomes and host factors. In-depth knowledge of the molecular mechanisms underlying the development of disease would further expand the applicability of these recent methods. Advances in next-generation/high-throughput sequencing have made possible more intensive studies into host-virus interactions. Utilizing the omics data and its application has the potential to expedite fast-tracking traditional plant breeding methods, as well as applying modern molecular tools for trait enhancement, including virus resistance. Here, we summarize the recent developments in the CRISPR/Cas system, transcriptomics, endogenous RNA interference, and exogenous application of dsRNA in virus disease management.


Assuntos
Vírus de Plantas , Viroses , Sistemas CRISPR-Cas , Interferência de RNA , Multiômica , Doenças das Plantas , Melhoramento Vegetal , Plantas/genética , Vírus de Plantas/genética , Viroses/genética , Gerenciamento Clínico , Genoma de Planta
4.
Front Microbiol ; 14: 1163566, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37303798

RESUMO

Cassava is a root crop important for global food security and the third biggest source of calories on the African continent. Cassava production is threatened by Cassava mosaic disease (CMD), which is caused by a complex of single-stranded DNA viruses (family: Geminiviridae, genus: Begomovirus) that are transmitted by the sweet potato whitefly (Bemisia tabaci). Understanding the dynamics of different cassava mosaic begomovirus (CMB) species through time is important for contextualizing disease trends. Cassava plants with CMD symptoms were sampled in Lake Victoria and coastal regions of Kenya before transfer to a greenhouse setting and regular propagation. The field-collected and greenhouse samples were sequenced using Illumina short-read sequencing and analyzed on the Galaxy platform. In the field-collected samples, African cassava mosaic virus (ACMV), East African cassava mosaic virus (EACMV), East African cassava mosaic Kenya virus (EACMKV), and East African cassava mosaic virus-Uganda variant (EACMV-Ug) were detected in samples from the Lake Victoria region, while EACMV and East African mosaic Zanzibar virus (EACMZV) were found in the coastal region. Many of the field-collected samples had mixed infections of EACMV and another begomovirus. After 3 years of regrowth in the greenhouse, only EACMV-like viruses were detected in all samples. The results suggest that in these samples, EACMV becomes the dominant virus through vegetative propagation in a greenhouse. This differed from whitefly transmission results. Cassava plants were inoculated with ACMV and another EACMV-like virus, East African cassava mosaic Cameroon virus (EACMCV). Only ACMV was transmitted by whiteflies from these plants to recipient plants, as indicated by sequencing reads and copy number data. These results suggest that whitefly transmission and vegetative transmission lead to different outcomes for ACMV and EACMV-like viruses.

5.
J Exp Bot ; 74(17): 5294-5306, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37260405

RESUMO

Genetic underpinnings of host-pathogen interactions in the parasitic plant Striga hermonthica, a root parasitic plant that ravages cereals in sub-Saharan Africa, are unclear. We performed a comparative transcriptome study on five genotypes of sorghum exhibiting diverse resistance responses to S. hermonthica using weighted gene co-expression network analysis (WGCNA). We found that S. hermonthica elicits both basal and effector-triggered immunity-like a bona fide pathogen. The resistance response was genotype specific. Some resistance responses followed the salicylic acid-dependent signaling pathway for systemic acquired resistance characterized by cell wall reinforcements, lignification, and callose deposition, while in others the WRKY-dependent signaling pathway was activated, leading to a hypersensitive response. In some genotypes, both modes of resistance were activated, while in others either mode dominated the resistance response. Cell wall-based resistance was common to all sorghum genotypes but strongest in IS2814, while a hypersensitive response was specific to N13, IS9830, and IS41724. WGCNA further allowed for pinpointing of S. hermonthica resistance causative genes in sorghum, including glucan synthase-like 10 gene, a pathogenesis-related thaumatin-like family gene, and a phosphoinositide phosphatase gene. Such candidate genes will form a good basis for subsequent functional validation and possibly future resistance breeding.


Assuntos
Sorghum , Striga , Sorghum/genética , Sorghum/metabolismo , Striga/genética , Grão Comestível , Melhoramento Vegetal , África Subsaariana
6.
Plant Dis ; 106(1): 39-45, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34279983

RESUMO

The Potyvirus Moroccan watermelon mosaic virus (MWMV) naturally infects and severely threatens production of cucurbits and papaya. In this study, we identified and characterized MWMV isolated from pumpkin (Cucurbita moschata) intercropped with MWMV-infected papaya plants through next-generation sequencing (NGS) and Sanger sequencing approaches. Complete MWMV genome sequences were obtained from two pumpkin samples through NGS and validated using Sanger sequencing. The isolates shared 83.4 to 83.7% nucleotide (nt) and 92.3 to 95.1% amino acid (aa) sequence identities in the coat protein and 79.5 to 79.9% nt and 89.2 to 89.7% aa identities in the polyprotein with papaya isolates of MWMV. Phylogenetic analysis using complete polyprotein nt sequences revealed the clustering of both pumpkin isolates of MWMV with corresponding sequences of cucurbit isolates of the virus from other parts of Africa and the Mediterranean regions, distinct from a clade formed by papaya isolates. Through sap inoculation, a pumpkin isolate of MWMV was pathogenic on zucchini (Cucurbita pepo), watermelon (Citrullus lanatus), and cucumber (Cucumis sativus) but not on papaya. Conversely, the papaya isolate of MWMV was nonpathogenic on pumpkin, watermelon, and cucumber, but it infected zucchini. The results suggest the occurrence of two strains of MWMV in Kenya having different biological characteristics associated with the host specificity.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Cucurbita , Potyvirus , Quênia , Filogenia , Doenças das Plantas , Potyvirus/genética
7.
J Virol Methods ; 298: 114301, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34560111

RESUMO

Globally, Sweet potato feathery mottle virus (SPFMV) and Sweet potato chlorotic stunt virus (SPCSV) occur frequently and in combination cause sweetpotato virus disease (SPVD). Many viral diseases are economically important and negatively impact the production and movement of germplasm across regions. Rapid detection of viruses is critical for effective control. Detection and quantification of viruses directly from sweetpotato remains a challenge. Current diagnostic tests are not sensitive enough to reliably detect viruses directly from the plant or require expensive laboratory equipment and expertise to perform. We developed a simple and rapid loop-mediated isothermal amplification (LAMP) assay for the detection of SPFMV, SPCSV and begomoviruses related to sweet potato leaf curl virus (SPLCV). Laboratory validation recorded 100 % diagnostic sensitivity for all the three viruses. The LAMP assays were customized for field testing using a lyophilized thermostable isothermal master mix in a ready-to-use form that required no cold chain. The average time to positivity (TTP) was: SPFMV 5-30 min, SPCSV 15-43 min s and begomoviruses 28-45 mins. LAMP on-site testing results were comparable to PCR and RT-PCR confirmatory laboratory tests. The LAMP assay is a powerful tool for rapid sweetpotato virus detection at a reasonable cost and thus could serve as quality control systems for planting materials.


Assuntos
Ipomoea batatas , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Doenças das Plantas , Plantas
8.
Virol J ; 18(1): 2, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407584

RESUMO

BACKGROUND: Tomato production is threatened worldwide by the occurrence of begomoviruses which are associated with tomato leaf curl diseases. There is little information on the molecular properties of tomato begomoviruses in Kenya, hence we investigated the population and genetic diversity of begomoviruses associated with tomato leaf curl in Kenya. METHODS: Tomato leaf samples with virus-like symptoms were obtained from farmers' field across the country in 2018 and Illumina sequencing undertaken to determine the genetic diversity of associated begomoviruses. Additionally, the occurrence of selection pressure and recombinant isolates within the population were also evaluated. RESULTS: Twelve complete begomovirus genomes were obtained from our samples with an average coverage of 99.9%. The sequences showed 95.7-99.7% identity among each other and 95.9-98.9% similarities with a Tomato leaf curl virus Arusha virus (ToLCArV) isolate from Tanzania. Analysis of amino acid sequences showed the highest identities in the regions coding for the coat protein gene (98.5-100%) within the isolates, and 97.1-100% identity with the C4 gene of ToLCArV. Phylogenetic algorithms clustered all Kenyan isolates in the same clades with ToLCArV, thus confirming the isolates to be a variant of the virus. There was no evidence of recombination within our isolates. Estimation of selection pressure within the virus population revealed the occurrence of negative or purifying selection in five out of the six coding regions of the sequences. CONCLUSIONS: The begomovirus associated with tomato leaf curl diseases of tomato in Kenya is a variant of ToLCArV, possibly originating from Tanzania. There is low genetic diversity within the virus population and this information is useful in the development of appropriate management strategies for the disease in the country.


Assuntos
Begomovirus/genética , Doenças das Plantas/virologia , Solanum lycopersicum/virologia , Begomovirus/classificação , Begomovirus/isolamento & purificação , DNA Viral/genética , Variação Genética , Genoma Viral/genética , Quênia , Metagenômica , Filogenia , Folhas de Planta/virologia , Recombinação Genética , Seleção Genética , Análise de Sequência de DNA , Proteínas Virais/genética
9.
BMC Biotechnol ; 20(1): 51, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32993601

RESUMO

BACKGROUND: Cassava is a staple food for over 800 million people globally providing a cheap source of carbohydrate. However, the cultivation of cassava in the country is facing to viral diseases, particularly cassava mosaic disease (CMD) which can cause up to 95% yield losses. With aim to supply farmers demand for clean planting materials, there is need to accelerate the production of the elite cultivars by use of tissue culture in order to cope with the demand. METHODS: Nodal explants harvested from the greenhouse grown plants were sterilised using different concentrations of a commercial bleach JIK (3.85% NaOCl) and varying time intervals. Microshoots induction was evaluated using thidiazuron (TDZ), benzyl amino purine (BAP), and kinetin. Rooting was evaluated using different auxins (Naphthalene acetic acid NAA and Indole-3-butyricacid IBA). PCR-based SSR and SCAR markers were used to verify the presence of CMD2 gene in the regenerated plantlets. RESULTS: The highest level of sterility in explants (90%) was obtained when 20% Jik was used for 15 min. The best cytokinin for microshoots regeneration was found to be kinetin with optimum concentrations of 5, 10 and 20 µM for Agric-rouge, Atinwewe, and Agblehoundo respectively. Medium without growth regulators was the best for rooting the three cultivars. A survival rate of 100, 98, and 98% was recorded in the greenhouse for Agric-rouge, Atinwewe, and Agblehoundo respectively and the plantlets appeared to be morphologically normal. The SSR and SCAR analysis of micropropagated plants showed a profile similar to that of the mother plants indicating that the regenerated plantlets retained the CMD2 gene after passing through in vitro culture, as expected with micropropagation. CONCLUSION: The nodal explants was established to be 20% of Jik (3.85% NaOCl) with an exposure time of 15 min. Kinetin was proved to be the best cytokinins for microshoot formation with the optimum concentration of 5, 10 and 20 µM for Agric-rouge, Atinwewe, and Agblehoundo respectively. The protocol developed during this study will be useful for mass propagation of the elite cassava cultivars.


Assuntos
Resistência à Doença/genética , Manihot/crescimento & desenvolvimento , Manihot/genética , Doenças das Plantas , Meios de Cultura , Citocininas , Genes de Plantas/genética , Ácidos Indolacéticos , Cinetina/metabolismo , Manihot/microbiologia , Compostos de Fenilureia , Desenvolvimento Vegetal , Brotos de Planta/crescimento & desenvolvimento , Purinas , Tiadiazóis
10.
Front Microbiol ; 11: 205, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194518

RESUMO

Carica papaya L. is an important fruit crop grown by small- and large-scale farmers in Kenya for local and export markets. However, its production is constrained by papaya ringspot disease (PRSD). The disease is believed to be caused by papaya ringspot virus (PRSV). Previous attempts to detect PRSV in papaya plants showing PRSD symptoms, using enzyme-linked immunosorbent assay (ELISA) and reverse transcriptase-polymerase chain reaction (RT-PCR) procedures with primers specific to PRSV, have not yielded conclusive results. Therefore, the nature of viruses responsible for PRSD was elucidated in papaya leaves collected from 22 counties through Illumina MiSeq next-generation sequencing (NGS) and validated by RT-PCR and Sanger sequencing. Viruses were detected in 38 out of the 48 leaf samples sequenced. Sequence analysis revealed the presence of four viruses: a Potyvirus named Moroccan watermelon mosaic virus (MWMV) and three viruses belonging to the genus Carlavirus. The Carlaviruses include cowpea mild mottle virus (CpMMV) and two putative Carlaviruses-closely related but distinct from cucumber vein-clearing virus (CuVCV) with amino acid and nucleotide sequence identities of 75.7-78.1 and 63.6-67.6%, respectively, in the coat protein genes. In reference to typical symptoms observed in the infected plants, the two putative Carlaviruses were named papaya mottle-associated virus (PaMV) and papaya mild mottle-associated virus (PaMMV). Surprisingly, and in contrast to previous studies conducted in other parts of world, PRSV was not detected. The majority of the viruses were detected as single viral infections, while a few were found to be infecting alongside another virus (for example, MWMV and PaMV). Furthermore, the NGS and RT-PCR analysis identified MWMV as being strongly associated with ringspot symptoms in infected papaya fruits. This study has provided the first complete genome sequences of these viruses isolated from papaya in Kenya, together with primers for their detection-thus proving to be an important step towards the design of long-term, sustainable disease management strategies.

11.
Plant Dis ; 104(5): 1477-1486, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32196415

RESUMO

In this study, the effect of a Kenyan strain of Sweetpotato leaf curl virus (SPLCV) and its interactions with Sweetpotato feathery mottle virus (SPFMV) and Sweetpotato chlorotic stunt virus (SPCSV) on root yield was determined. Trials were performed during two seasons using varieties Kakamega and Ejumula and contrasting in their resistance to sweetpotato virus disease in a randomized complete block design with 16 treatments replicated three times. The treatments included plants graft inoculated with SPLCV, SPFMV, and SPCSV alone and in possible dual or triple combinations. Yield and yield-related parameters were evaluated at harvest. The results showed marked differences in the effect of SPLCV infection on the two varieties. Ejumula, which is highly susceptible to SPFMV and SPCSV, suffered no significant yield loss from SPLCV infection, whereas Kakamega, which is moderately resistant to SPFMV and SPCSV, suffered an average of 47% yield loss from SPLCV, despite only mild symptoms occurring in both varieties. These results highlight the variability in yield response to SPLCV between sweetpotato cultivars as well as a lack of correlation of SPLCV-related symptoms with yield reduction. In addition, they underline the lack of correlation between resistance to the RNA viruses SPCSV and SPFMV and the DNA virus SPLCV.[Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Ipomoea batatas , Quênia , Doenças das Plantas
12.
PeerJ ; 8: e8632, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32175188

RESUMO

Cassava is a staple food crop in sub-Saharan Africa; it is a rich source of carbohydrates and proteins which currently supports livelihoods of more than 800 million people worldwide. However, its continued production is at stake due to vector-transmitted diseases such as Cassava mosaic disease and Cassava brown streak disease. Currently, the management and control of viral diseases in cassava relies mainly on virus-resistant cultivars of cassava. Thus, the discovery of new target genes for plant virus resistance is essential for the development of more cassava varieties by conventional breeding or genetic engineering. The chloroplast is a common target for plant viruses propagation and is also a potential source for discovering new resistant genes for plant breeding. Non-infected and infected cassava leaf samples were obtained from different locations of East Africa in Tanzania, Kenya and Mozambique. RNA extraction followed by cDNA library preparation and Illumina sequencing was performed. Assembling and mapping of the reads were carried out and 33 partial chloroplast genomes were obtained. Bayesian phylogenetic analysis from 55 chloroplast protein-coding genes of a dataset with 39 taxa was performed and the single nucleotide polymorphisms for the chloroplast dataset were identified. Phylogenetic analysis revealed considerable genetic diversity present in chloroplast partial genome among cultivated cassava of East Africa. The results obtained may supplement data of previously selected resistant materials and aid breeding programs to find diversity and achieve resistance for new cassava varieties.

13.
Genes (Basel) ; 10(9)2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31438604

RESUMO

In this case study we successfully teamed the PDQeX DNA purification technology developed by MicroGEM, New Zealand, with the MinION and MinIT mobile sequencing devices developed by Oxford Nanopore Technologies to produce an effective point-of-need field diagnostic system. The PDQeX extracts DNA using a cocktail of thermophilic proteinases and cell wall-degrading enzymes, thermo-responsive extractor cartridges and a temperature control unit. This closed system delivers purified DNA with no cross-contamination. The MinIT is a newly released data processing unit that converts MinION raw signal output into nucleotide base called data locally in real-time, removing the need for high-specification computers and large file transfers from the field. All three devices are battery powered with an exceptionally small footprint that facilitates transport and setup. To evaluate and validate capability of the system for unbiased pathogen identification by real-time sequencing in a farmer's field setting, we analysed samples collected from cassava plants grown by subsistence farmers in three sub-Sahara African countries (Tanzania, Uganda and Kenya). A range of viral pathogens, all with similar symptoms, greatly reduce yield or destroy cassava crops. Eight hundred (800) million people worldwide depend on cassava for food and yearly income, and viral diseases are a significant constraint to its production. Early pathogen detection at a molecular level has great potential to rescue crops within a single growing season by providing results that inform decisions on disease management, use of appropriate virus-resistant or replacement planting. This case study presented conditions of working in-field with limited or no access to mains power, laboratory infrastructure, Internet connectivity and highly variable ambient temperature. An additional challenge is that, generally, plant material contains inhibitors of downstream molecular processes making effective DNA purification critical. We successfully undertook real-time on-farm genome sequencing of samples collected from cassava plants on three farms, one in each country. Cassava mosaic begomoviruses were detected by sequencing leaf, stem, tuber and insect samples. The entire process, from arrival on farm to diagnosis, including sample collection, processing and provisional sequencing results was complete in under 3 h. The need for accurate, rapid and on-site diagnosis grows as globalized human activity accelerates. This technical breakthrough has applications that are relevant to human and animal health, environmental management and conservation.


Assuntos
Begomovirus/genética , Genômica/métodos , Hemípteros/genética , Manihot/virologia , Doenças das Plantas/virologia , Análise de Sequência de DNA/métodos , África Oriental , Animais , Begomovirus/patogenicidade , Genômica/instrumentação , Hemípteros/patogenicidade , Manihot/parasitologia , Doenças das Plantas/parasitologia , Kit de Reagentes para Diagnóstico/normas , Análise de Sequência de DNA/instrumentação
14.
Physiol Mol Plant Pathol ; 105: 3-16, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31007371

RESUMO

Sweetpotato (Ipomoea batatas) is a vital crop for overcoming food insecurity in sub-Saharan Africa and its production is highest in East Africa where yields are high and the growing seasons are short. This cross-country study assessed farmers' local practices and their knowledge of the biotic constraints to sweetpotato production in Uganda, Rwanda, Kenya and Tanzania with the aim of providing empirical data that can ultimately be used to enhance sweetpotato production in these four countries. We collected data from 675 households using a standardized questionnaire integrated with a web-based mobile app. Survey results provided strong evidence that sweetpotato is valued as an important subsistence crop among smallholder farmers on pieces of land of less than 0.4 ha, and we observed that females were more involved than males in sweetpotato production. Sweetpotato was ranked as the second most important staple crop after cassava. Farmers noted an increase in sweetpotato production over the past five years in Uganda and Kenya but a decrease in Rwanda and Tanzania; the proportion of farmers who reported a decrease (33%) and an increase (36%) did not significantly differ. The main constraints to production were reported to be pests (32.6%), drought (21.6%), diseases (11.9%) and lack of disease-free planting materials (6.8%). Farmers recognized the signs and symptoms associated with sweetpotato diseases on leaves, root tubers, and whole plants, but most were unable to assign the disease type (bacterial, fungal or viral) correctly. We suggest that regional governments improve education, increase the provision of clean planting materials and strengthen breeding programs to improve disease resistance.

15.
Physiol Mol Plant Pathol ; 105: 88-95, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31007377

RESUMO

Cassava brown streak disease (CBSD) caused by Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV) is the main constraint to cassava (Manihot esculenta Crantz) production in Mozambique. Using RT-PCR to amplify partial coat protein nucleotide sequences, we detected for the first time the occurrence of CBSV in two non-cassava perennial wild plant species: Zanha africana (Radlk.) Exell. and Trichodesma zeylanicum (Burm.f.) R.Br., that occur widely within and near cassava fields in Nampula, Zambezia, Niassa and Cabo Delgado provinces. In addition, we also detected CBSV and UCBSV in Manihot carthaginensis subsp. glaziovii (Müell-Arg.) Allem., a wild cassava relative. These findings were verified in biological assays through mechanical inoculation of CBSV to T. zeylanicum, albeit at low rates of infection. Phylogenetic analysis clustered the CBSV isolates from the non-cassava plant species with those from cultivated cassava, with high sequence homology among CBSV (91.0-99.6%) and with UCBSV (84-92%) isolates. These results provide definitive evidence of a wider host range for CBSV and UCBSV in Mozambique, indicating that these viruses are not restricted to cultivated cassava. Our findings are key to understanding the epidemiology of CBSD and will aid in the development of sustainable management strategies for the disease.

16.
Int J Food Sci ; 2019: 2148914, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30863776

RESUMO

Various modes of edible coating application vary in their coat dispersion and film formation, hence the need to determine the most effective mode of application for cassava. Edible surface coatings have been found to be effective in preserving the quality of various food products. However, there are variations in effectiveness among the different coating solutions, hence the need for optimization of the concentrations of the gums used. This study aimed at determining the most efficient coating application method on the cassava postharvest quality. Physiologically mature cassava (variety KME 1) was harvested and divided into seven portions. The various portions were coated using 1.5% xanthan gum, 1.5% xanthan/guar gum, and 2% xanthan/guar gum by both dipping and spraying method. There was no significant difference on the colour, total cyanide, ethylene production, and total phenolic content between the two application methods. The 2% xanthan/guar gum coating showed a significant difference on the dry matter content while the 1.5% xanthan gum coating had a significant difference on the respiration rate and weight loss. The 1.5 xanthan treated roots had a final dry matter content of 72.5% for the sprayed samples and 75.98% for the dipped sample while the 2% xanthan/guar gum treated roots had a final dry matter content of 64.6% and 74.1% for the dipped and sprayed root samples, respectively. The 1.5% xanthan and 2% xanthan/guar gum treated roots showed no significant difference in their action on dry matter content. The 1.5% xanthan/guar dipped and sprayed samples differed significantly on their effect on flesh firmness with final values of 35.4N and 46.1N, respectively, at 20 days after harvest. This study suggested that based on the coating solution and the parameters being observed, there generally was no varying effect of dipping and spraying methods of coating application. The choice of the efficient mode of application to use will depend on other factors such as the easiness of application.

17.
PeerJ ; 7: e6465, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30891366

RESUMO

Common bean (Phaseolus vulgaris L.) is the primary source of protein and nutrients in the majority of households in sub-Saharan Africa. However, pests and viral diseases are key drivers in the reduction of bean production. To date, the majority of viruses reported in beans have been RNA viruses. In this study, we carried out a viral metagenomic analysis on virus symptomatic bean plants. Our virus detection pipeline identified three viral fragments of the double-stranded DNA virus Pelargonium vein banding virus (PVBV) (family, Caulimoviridae, genus Badnavirus). This is the first report of the dsDNA virus and specifically PVBV in legumes to our knowledge. In addition two previously reported +ssRNA viruses the bean common mosaic necrosis virus (BCMNVA) (Potyviridae) and aphid lethal paralysis virus (ALPV) (Dicistroviridae) were identified. Bayesian phylogenetic analysis of the Badnavirus (PVBV) using amino acid sequences of the RT/RNA-dependent DNA polymerase region showed the Kenyan sequence (SRF019_MK014483) was closely matched with two Badnavirus viruses: Dracaena mottle virus (DrMV) (YP_610965) and Lucky bamboo bacilliform virus (ABR01170). Phylogenetic analysis of BCMNVA was based on amino acid sequences of the Nib region. The BCMNVA phylogenetic tree resolved two clades identified as clade (I and II). Sequence from this study SRF35_MK014482, clustered within clade I with other Kenyan sequences. Conversely, Bayesian phylogenetic analysis of ALPV was based on nucleotide sequences of the hypothetical protein gene 1 and 2. Three main clades were resolved and identified as clades I-III. The Kenyan sequence from this study (SRF35_MK014481) clustered within clade II, and nested within a sub-clade; comprising of sequences from China and an earlier ALPV sequences from Kenya isolated from maize (MF458892). Our findings support the use of viral metagenomics to reveal the nascent viruses, their viral diversity and evolutionary history of these viruses. The detection of ALPV and PVBV indicate that these viruses have likely been underreported due to the unavailability of diagnostic tools.

18.
PeerJ ; 7: e6297, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30783563

RESUMO

Plant viral diseases are one of the major limitations in legume production within sub-Saharan Africa (SSA), as they account for up to 100% in production losses within smallholder farms. In this study, field surveys were conducted in the western highlands of Kenya with viral symptomatic leaf samples collected. Subsequently, next-generation sequencing was carried out to gain insights into the molecular evolution and evolutionary relationships of Bean common mosaic necrosis virus (BCMNV) and Cowpea aphid-borne mosaic virus (CABMV) present within symptomatic common bean and cowpea. Eleven near-complete genomes of BCMNV and two for CABMV were obtained from western Kenya. Bayesian phylogenomic analysis and tests for differential selection pressure within sites and across tree branches of the viral genomes were carried out. Three well-supported clades in BCMNV and one supported clade for CABMNV were resolved and in agreement with individual gene trees. Selection pressure analysis within sites and across phylogenetic branches suggested both viruses were evolving independently, but under strong purifying selection, with a slow evolutionary rate. These findings provide valuable insights on the evolution of BCMNV and CABMV genomes and their relationship to other viral genomes globally. The results will contribute greatly to the knowledge gap involving the phylogenomic relationship of these viruses, particularly for CABMV, for which there are few genome sequences available, and inform the current breeding efforts towards resistance for BCMNV and CABMV.

19.
Crop Prot ; 115: 104-112, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30739973

RESUMO

Cassava brown streak disease (CBSD) and cassava mosaic disease (CMD) are two viral diseases that cause severe yield losses in cassava of up to 100%, thereby persistently threatening food and income security in sub-Saharan Africa. For effective management of these diseases, there is a critical need to develop and deploy varieties with dual resistance to CBSD and CMD. In this study, we determined the response of advanced breeding lines to field infection by cassava brown streak viruses (CBSVs) and cassava mosaic begomoviruses (CMBs). This aim helped in identifying superior clones for downstream breeding. In total, 220 cassava clones, three in uniform yield trials (UYTs) and 217 in a crossing block trial (CBT), were evaluated for virus and disease resistance. Field data were collected on disease incidence and severity. To detect and quantify CBSVs, 448 and 128 leaf samples from CBSD symptomatic and symptomless plants were analyzed by reverse transcription PCR and real-time quantitative PCR, respectively. In addition, 93 leaf samples from CMD symptomatic plants in the CBT were analyzed by conventional PCR using CMB species-specific primers. In the CBT, 124 (57%) cassava clones did not express CMD symptoms. Of the affected plants, 44 (55%) had single African cassava mosaic virus infection. Single Cassava brown streak virus (CBSV) infections were more prevalent (81.6%) in CBT clones than single Ugandan cassava brown streak virus (UCBSV) infection (3.2%). Of the three advanced clones in the UYT, NAROCASS 1 and NAROCASS 2 had significantly lower (P < 0.05) CBSD severity, incidence, and CBSV load than MH04/0300. In the UYT, only 22% of samples tested had CBSVs, and all showed a negative result for CMBs. The low disease incidence, severity, and viral load associated with NAROCASS 1 and NAROCASS 2 is evidence of their tolerance to both CBSD and CMD. Therefore, these two cassava clones should be utilized in CBSD and CMD management in Uganda, including their utilization as progenitors in further virus resistance breeding.

20.
Virol J ; 15(1): 128, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30107851

RESUMO

BACKGROUND: Cassava brown streak disease (CBSD) has a viral aetiology and is caused by viruses belonging to the genus Ipomovirus (family Potyviridae), Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV). Molecular and serological methods are available for detection, discrimination and quantification of cassava brown streak viruses (CBSVs) in infected plants. However, precise determination of the viral RNA localization in infected host tissues is still not possible pending appropriate methods. RESULTS: We have developed an in situ hybridization (ISH) assay based on RNAscope® technology that allows the sensitive detection and localization of CBSV RNA in plant tissues. The method was initially developed in the experimental host Nicotiana rustica and was then further adapted to cassava. Highly sensitive and specific detection of CBSV RNA was achieved without background and hybridization signals in sections prepared from non-infected tissues. The tissue tropism of CBSV RNAs appeared different between N. rustica and cassava. CONCLUSIONS: This study provides a robust method for CBSV detection in the experimental host and in cassava. The protocol will be used to study CBSV tropism in various cassava genotypes, as well as CBSVs/cassava interactions in single and mixed infections.


Assuntos
Hibridização In Situ , Manihot/virologia , Doenças das Plantas/virologia , Potyviridae/genética , RNA Viral/genética , RNA Viral/metabolismo , Nicotiana/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA