Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 133(10)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36995772

RESUMO

Despite advances in acute care, ischemic stroke remains a major cause of long-term disability. Approaches targeting both neuronal and glial responses are needed to enhance recovery and improve long-term outcome. The complement C3a receptor (C3aR) is a regulator of inflammation with roles in neurodevelopment, neural plasticity, and neurodegeneration. Using mice lacking C3aR (C3aR-/-) and mice overexpressing C3a in the brain, we uncovered 2 opposing effects of C3aR signaling on functional recovery after ischemic stroke: inhibition in the acute phase and facilitation in the later phase. Peri-infarct astrocyte reactivity was increased and density of microglia reduced in C3aR-/- mice; C3a overexpression led to the opposite effects. Pharmacological treatment of wild-type mice with intranasal C3a starting 7 days after stroke accelerated recovery of motor function and attenuated astrocyte reactivity without enhancing microgliosis. C3a treatment stimulated global white matter reorganization, increased peri-infarct structural connectivity, and upregulated Igf1 and Thbs4 in the peri-infarct cortex. Thus, C3a treatment from day 7 after stroke exerts positive effects on astrocytes and neuronal connectivity while avoiding the deleterious consequences of C3aR signaling during the acute phase. Intranasal administration of C3aR agonists within a convenient time window holds translational promise to improve outcome after ischemic stroke.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Camundongos , Animais , Complemento C3a/genética , Astrócitos , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/genética , Infarto
2.
Brain ; 140(2): 353-369, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27956400

RESUMO

Ischaemic stroke induces endogenous repair processes that include proliferation and differentiation of neural stem cells and extensive rewiring of the remaining neural connections, yet about 50% of stroke survivors live with severe long-term disability. There is an unmet need for drug therapies to improve recovery by promoting brain plasticity in the subacute to chronic phase after ischaemic stroke. We previously showed that complement-derived peptide C3a regulates neural progenitor cell migration and differentiation in vitro and that C3a receptor signalling stimulates neurogenesis in unchallenged adult mice. To determine the role of C3a-C3a receptor signalling in ischaemia-induced neural plasticity, we subjected C3a receptor-deficient mice, GFAP-C3a transgenic mice expressing biologically active C3a in the central nervous system, and their respective wild-type controls to photothrombotic stroke. We found that C3a overexpression increased, whereas C3a receptor deficiency decreased post-stroke expression of GAP43 (P < 0.01), a marker of axonal sprouting and plasticity, in the peri-infarct cortex. To verify the translational potential of these findings, we used a pharmacological approach. Daily intranasal treatment of wild-type mice with C3a beginning 7 days after stroke induction robustly increased synaptic density (P < 0.01) and expression of GAP43 in peri-infarct cortex (P < 0.05). Importantly, the C3a treatment led to faster and more complete recovery of forepaw motor function (P < 0.05). We conclude that C3a-C3a receptor signalling stimulates post-ischaemic neural plasticity and intranasal treatment with C3a receptor agonists is an attractive approach to improve functional recovery after ischaemic brain injury.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Complemento C3a/uso terapêutico , Plasticidade Neuronal/efeitos dos fármacos , Administração Intranasal , Animais , Infarto Encefálico/tratamento farmacológico , Infarto Encefálico/etiologia , Isquemia Encefálica/complicações , Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/genética , Antígeno CD11b/genética , Antígeno CD11b/metabolismo , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Modelos Animais de Doenças , Lateralidade Funcional/efeitos dos fármacos , Lateralidade Funcional/genética , Proteína GAP-43/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Plasticidade Neuronal/genética , Desempenho Psicomotor/efeitos dos fármacos , Recuperação de Função Fisiológica/efeitos dos fármacos , Recuperação de Função Fisiológica/genética , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Sinapsinas/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo
4.
Psychopharmacology (Berl) ; 233(12): 2355-63, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27044354

RESUMO

RATIONALE: Melanin-concentrating hormone (MCH) is involved in the regulation of food intake and has recently been associated with alcohol-related behaviors. Blockade of MCH-1 receptors (MCH1-Rs) attenuates operant alcohol self-administration and decreases cue-induced reinstatement, but the mechanism through which the MCH1-R influences these behaviors remains unknown. MCH1-Rs are highly expressed in the nucleus accumbens shell (NAcSh) where they are co-expressed with dopamine (DA) receptors. MCH has been shown to potentiate responses to dopamine and to increase phosphorylation of DARPP-32, an intracellular marker of DA receptor activation, in the NAcSh. METHODS: In the present study, we investigated the role of the MCH1-R in alcohol reward using the conditioned place preference (CPP) paradigm. We then used immunohistochemistry (IHC) to assess activation of downstream signaling after administration of a rewarding dose of alcohol. RESULTS: We found that alcohol-induced CPP was markedly decreased in mice with a genetic deletion of the MCH1-R as well as after pharmacological treatment with an MCH1-R antagonist, GW803430. In contrast, an isocaloric dose of dextrose did not produce CPP. The increase in DARPP-32 phosphorylation seen in wildtype (WT) mice after acute alcohol administration in the NAcSh was markedly reduced in MCH1-R knock-out (KO) mice. CONCLUSION: Our results suggest that MCH1-Rs regulate the rewarding properties of alcohol through interactions with signaling cascades downstream of DA receptors in the NAcSh.


Assuntos
Condicionamento Psicológico/efeitos dos fármacos , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Etanol/administração & dosagem , Núcleo Accumbens/metabolismo , Receptores de Somatostatina/fisiologia , Recompensa , Animais , Condicionamento Psicológico/fisiologia , Dopamina/metabolismo , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Núcleo Accumbens/efeitos dos fármacos , Fosforilação/fisiologia , Autoadministração
5.
FASEB J ; 27(9): 3797-804, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23737250

RESUMO

Complement is an essential component of inflammation that plays a role in ischemic brain injury. Recent reports demonstrate novel functions of complement in normal and diseased CNS, such as regulation of neurogenesis and synapse elimination. Here, we examined the role of complement-derived peptide C3a in unilateral hypoxia-ischemia (HI), a model of neonatal HI encephalopathy. HI injury was induced at postnatal day 9 (P9), and loss of hippocampal tissue was determined on P31. We compared WT mice with transgenic mice expressing C3a under the control of glial fibrillary acidic protein promoter, which express biologically active C3a only in CNS and without the requirement of a priori complement activation. Further, we injected C3a peptide into the lateral cerebral ventricle of mice lacking the C3a receptor (C3aR) and WT mice and assessed HI-induced memory impairment 41 d later. We found that HI-induced tissue loss in C3a overexpressing mice was reduced by 50% compared with WT mice. C3a peptide injected 1 h after HI protected WT but not C3aR-deficient mice against HI-induced memory impairment. Thus, C3a acting through its canonical receptor ameliorates behavioral deficits after HI injury, and C3aR is a novel therapeutic target for the treatment of neonatal HI encephalopathy.


Assuntos
Hipóxia-Isquemia Encefálica/metabolismo , Receptores de Complemento/metabolismo , Animais , Animais Recém-Nascidos , Astrócitos/citologia , Astrócitos/metabolismo , Complemento C3a/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Hipóxia-Isquemia Encefálica/genética , Hipóxia-Isquemia Encefálica/patologia , Imuno-Histoquímica , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/citologia , Neurônios/metabolismo , RNA Mensageiro/genética , Receptores de Complemento/deficiência , Receptores de Complemento/genética
6.
Dev Neurosci ; 33(3-4): 222-30, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21778703

RESUMO

Trace fear conditioning is a well-established test for the assessment of learning deficits in rodents. The aim of this study was to determine whether hypoxia-ischemia (HI) on postnatal day 9 (P9) in mice prevents the acquisition and expression of cued and contextual fear learning in early adulthood. Brain injury was induced in mice on P9 by 30 min of HI. On P49 and P50, animals were tested for: (1) trace fear conditioning with a short delay (2 s) between a shock-paired tone plus light and shock, (2) trace fear conditioning with a longer delay (20 s) between a shock-paired tone and shock, and (3) trace fear conditioning with a 2-second delay between a shock-paired tone and shock with additional visual, olfactory and tactile contextual cues in the fear conditioning apparatus. Outcome was assessed as percent of time spent freezing during a 2-min test. Histological assessment of the hippocampus and amygdala was performed on P51 to determine the extent of HI injury. Both shock-paired tone plus light with a short delay and shock-paired tone with a short delay plus additional contextual cues enhanced tone-induced freezing behavior in a nonhandled control group, but not in the HI group. For trace fear conditioning with a 20-second delay between the tone and the shock, freezing behavior did not differ significantly between nonhandled control and HI animals. Dorsal hippocampal and amygdala volumes were smaller in the ischemic hemispheres of the HI mice that displayed impaired fear memory with shock-paired tone plus light. In summary, we have shown that trace fear conditioning is a sensitive method for detecting memory impairments in adolescent mice following mild HI injury during the neonatal period. Combining a discrete conditioned stimulus (shock-paired tone plus light) with a short trace delay was the most sensitive method for using the fear conditioning paradigm to detect mild HI damage to the hippocampus and amygdala.


Assuntos
Animais Recém-Nascidos , Condicionamento Clássico/fisiologia , Medo/fisiologia , Hipóxia-Isquemia Encefálica/patologia , Hipóxia-Isquemia Encefálica/fisiopatologia , Tonsila do Cerebelo/citologia , Tonsila do Cerebelo/patologia , Tonsila do Cerebelo/fisiologia , Tonsila do Cerebelo/fisiopatologia , Animais , Comportamento Animal/fisiologia , Sinais (Psicologia) , Hipocampo/citologia , Hipocampo/patologia , Hipocampo/fisiologia , Hipocampo/fisiopatologia , Memória/fisiologia , Camundongos , Camundongos Endogâmicos C57BL
7.
Pharmacol Biochem Behav ; 90(3): 481-91, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18499239

RESUMO

Associations between cocaine and cues facilitate development and maintenance of addiction. We hypothesized that the ventral hippocampus is important for acquisition of these associations. Rats were trained to self-administer cocaine, with or without pre-exposure to distinct sets of cocaine- and saline-paired contextual cues. Next, rats were conditioned for 3 days with the distinct sets of contextual cues paired with cocaine and saline along with distinct discrete cues. Vehicle or lidocaine was infused into the ventral hippocampus prior to conditioning sessions. Following extinction, reinstatement of cocaine-seeking behavior was examined following exposure to contextual cues, discrete cues, or their combination. Inactivation of the ventral hippocampus during conditioning blocked acquisition of the association between cocaine and cocaine-paired contextual cues in that only lidocaine-treated rats with short-term cue exposure failed to reinstate responding in the presence of cocaine-paired contextual cues. Lidocaine also prevented rats in both cue exposure groups from discriminating between cocaine- and saline-paired contextual cues during reinstatement tests. Reinstatement induced by cocaine-paired discrete cues or by contextual and discrete cues together was not impaired for either cue exposure condition. The hippocampus is important for acquisition of the association between cocaine and context and in maintaining discrimination between cocaine-relevant and -irrelevant contextual cues.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/psicologia , Cocaína/farmacologia , Sinais (Psicologia) , Hipocampo/fisiologia , Estimulação Acústica , Anestésicos Locais/farmacologia , Animais , Cocaína/administração & dosagem , Condicionamento Operante/efeitos dos fármacos , Alimentos , Lidocaína/farmacologia , Masculino , Microinjeções , Ratos , Ratos Wistar , Recidiva , Esquema de Reforço , Autoadministração , Olfato/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA