Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Elife ; 132024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38910553

RESUMO

Examination of bacteria/host cell interactions is important for understanding the aetiology of many infectious diseases. The colony forming unit (CFU) has been the standard for quantifying bacterial burden for the past century, however, this suffers from low sensitivity and is dependent on bacterial culturability in vitro. Our data demonstrate the discrepancy between the CFU and bacterial genome copy number in an osteomyelitis-relevant co-culture system and we confirm diagnosis and quantify bacterial load in clinical bone specimens. This study provides an improved workflow for the quantification of bacterial burden in such cases.


Assuntos
Osteomielite , Osteomielite/microbiologia , Humanos , Carga Bacteriana , Técnicas de Cocultura , Contagem de Colônia Microbiana , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/classificação
2.
Front Cell Infect Microbiol ; 14: 1403289, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38915921

RESUMO

Staphylococcus aureus is a major causative pathogen of osteomyelitis. Intracellular infections of resident bone cells including osteocytes can persist despite gold-standard clinical intervention. The mechanisms by which intracellular S. aureus evades antibiotic therapy are unknown. In this study, we utilised an in vitro S. aureus infection model of human osteocytes to investigate whether antibiotic-mediated dysregulation of autophagy contributes to this phenomenon. Infected or non-infected osteocyte-like cells were exposed to combinations of rifampicin, vancomycin, and modulators of autophagy. Intracellular bacterial growth characteristics were assessed using colony-forming unit (CFU) analysis, viable bacterial DNA abundance, and the rate of escape into antibiotic-free medium, together with measures of autophagic flux. Rifampicin, alone or in combination with vancomycin, caused a rapid decrease in the culturability of intracellular bacteria, concomitant with stable or increased absolute bacterial DNA levels. Both antibiotics significantly inhibited autophagic flux. However, modulation of autophagic flux did not affect viable bacterial DNA levels. In summary, autophagy was shown to be a factor in the host-pathogen relationship in this model, as its modulation affected the growth state of intracellular S. aureus with respect to both their culturability and propensity to escape the intracellular niche. While rifampicin and vancomycin treatments moderately suppressed autophagic flux acutely, this did not explain the paradoxical response of antibiotic treatment in decreasing S. aureus culturability whilst failing to clear bacterial DNA and hence intracellular bacterial load. Thus, off-target effects of rifampicin and vancomycin on autophagic flux in osteocyte-like cells could not explain the persistent S. aureus infection in these cells.


Assuntos
Antibacterianos , Autofagia , Osteócitos , Rifampina , Infecções Estafilocócicas , Staphylococcus aureus , Vancomicina , Autofagia/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Osteócitos/efeitos dos fármacos , Osteócitos/microbiologia , Antibacterianos/farmacologia , Humanos , Vancomicina/farmacologia , Rifampina/farmacologia , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/tratamento farmacológico , Interações Hospedeiro-Patógeno , DNA Bacteriano/genética
3.
Osteoarthritis Cartilage ; 32(5): 493-500, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38160744

RESUMO

OBJECTIVE: Osteoarthritis (OA) is a disease of joints, in which the bone under the articular cartilage undergoes increased remodelling activity. The question is whether a better understanding of the causes and mechanisms of bone remodelling can predict disease-modifying treatments. DESIGN: This review summarises the current understanding of the aetiology of OA, with an emphasis on events in the subchondral bone (SCB), and the cells and cytokines involved, to seek an answer to this question. RESULTS: SCB remodelling across OA changes the microstructure of the SCB, which alters the load-bearing properties of the joint and seems to have an important role in the initiation and progression of OA. Bone remodelling is tightly controlled by numerous cytokines, of which Receptor Activator of NFκB ligand (RANKL) and osteoprotegerin are central factors in almost all known bone conditions. In terms of finding therapeutic options for OA, an important question is whether controlling the rate of SCB remodelling would be beneficial. The role of RANKL in the pathogenesis and progression of OA and the effect of its neutralisation remain to be clarified. CONCLUSIONS: This review further makes the case for SCB remodelling as important in OA and for additional study of RANKL in OA, both its pathophysiological role and its potential as an OA disease target.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Cartilagem Articular/patologia , Citocinas , Ligantes , Osteoartrite/patologia , Osteoprotegerina , Ligante RANK
4.
J Orthop Res ; 42(3): 512-517, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38146070

RESUMO

Antimicrobial strategies for musculoskeletal infections are typically first developed with in vitro models. The In Vitro Section of the 2023 Orthopedic Research Society Musculoskeletal Infection international consensus meeting (ICM) probed our state of knowledge of in vitro systems with respect to bacteria and biofilm phenotype, standards, in vitro activity, and the ability to predict in vivo efficacy. A subset of ICM delegates performed systematic reviews on 15 questions and made recommendations and assessment of the level of evidence that were then voted on by 72 ICM delegates. Here, we report recommendations and rationale from the reviews and the results of the internet vote. Only two questions received a ≥90% consensus vote, emphasizing the disparate approaches and lack of established consensus for in vitro modeling and interpretation of results. Comments on knowledge gaps and the need for further research on these critical MSKI questions are included.


Assuntos
Biofilmes , Consenso
5.
J Orthop Res ; 42(3): 518-530, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38102985

RESUMO

Musculoskeletal infections (MSKI), which are a major problem in orthopedics, occur when the pathogen eludes or overwhelms the host immune system. While effective vaccines and immunotherapies to prevent and treat MSKI should be possible, fundamental knowledge gaps in our understanding of protective, nonprotective, and pathogenic host immunity are prohibitive. We also lack critical knowledge of how host immunity is affected by the microbiome, implants, prior infection, nutrition, antibiotics, and concomitant therapies, autoimmunity, and other comorbidities. To define our current knowledge of these critical topics, a Host Immunity Section of the 2023 Orthopaedic Research Society MSKI International Consensus Meeting (ICM) proposed 78 questions. Systematic reviews were performed on 15 of these questions, upon which recommendations with level of evidence were voted on by the 72 ICM delegates, and another 12 questions were voted on with a recommendation of "Unknown" without systematic reviews. Two questions were transferred to another ICM Section, and the other 45 were tabled for future consideration due to limitations of available human resources. Here we report the results of the voting with internet access to the questions, recommendations, and rationale from the systematic reviews. Eighteen questions received a consensus vote of ≥90%, while nine recommendations failed to achieve this threshold. Commentary on why consensus was not achieved on these questions and potential ways forward are provided to stimulate specific funding mechanisms and research on these critical MSKI host defense questions.


Assuntos
Procedimentos Ortopédicos , Ortopedia , Humanos , Consenso , Antibacterianos/uso terapêutico , Imunoterapia
6.
Physiol Rep ; 11(21): e15851, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37929653

RESUMO

The intracellular infection of osteocytes represents a clinically important aspect of osteomyelitis. However, few human osteocyte in vitro models exist and the differentiation of immature osteoblasts to an osteocyte stage typically takes at least 4-weeks of culture, making the study of this process challenging and time consuming. The osteosarcoma cell line Saos-2 has proved to be a useful model of human osteoblast to mature osteocyte differentiation. Culture under osteogenic conditions in a standard normoxic (21% O2 ) atmosphere results in reproducible mineralization and acquisition of mature osteocyte markers over the expected 28-35 day culture period. In order to expedite experimental assays, we tested whether reducing available oxygen to mimic concentrations experienced by osteocytes in vivo would increase the rate of differentiation. Cells cultured under 1% O2 exhibited maximal mineral deposition by 14 days. Early (COLA1, MEPE) and mature (PHEX, DMP1, GJA1, SOST) osteocyte markers were upregulated earlier under hypoxia compared to normoxia. Cells differentiated under 1% O2 for 14 days displayed a similar ability to internalize Staphylococcus aureus as day 28 cells grown under normoxic conditions. Thus, low oxygen accelerates Saos-2 osteocyte differentiation, resulting in a useful human osteocyte-like cell model within 14 days.


Assuntos
Osteócitos , Staphylococcus aureus , Humanos , Osteócitos/metabolismo , Regulação da Expressão Gênica , Osteoblastos/metabolismo , Diferenciação Celular , Hipóxia/metabolismo , Oxigênio/metabolismo , Células Cultivadas
7.
Bone Joint Res ; 12(10): 657-666, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37844909

RESUMO

Aims: Impaired fracture repair in patients with type 2 diabetes mellitus (T2DM) is not fully understood. In this study, we aimed to characterize the local changes in gene expression (GE) associated with diabetic fracture. We used an unbiased approach to compare GE in the fracture callus of Zucker diabetic fatty (ZDF) rats relative to wild-type (WT) littermates at three weeks following femoral osteotomy. Methods: Zucker rats, WT and homozygous for leptin receptor mutation (ZDF), were fed a moderately high-fat diet to induce T2DM only in the ZDF animals. At ten weeks of age, open femoral fractures were simulated using a unilateral osteotomy stabilized with an external fixator. At three weeks post-surgery, the fractured femur from each animal was retrieved for analysis. Callus formation and the extent of healing were assessed by radiograph and histology. Bone tissue was processed for total RNA extraction and messenger RNA (mRNA) sequencing (mRNA-Seq). Results: Radiographs and histology demonstrated impaired fracture healing in ZDF rats with incomplete bony bridge formation and an influx of intramedullary inflammatory tissue. In comparison, near-complete bridging between cortices was observed in Sham WT animals. Of 13,160 genes, mRNA-Seq analysis identified 13 that were differentially expressed in ZDF rat callus, using a false discovery rate (FDR) threshold of 10%. Seven genes were upregulated with high confidence (FDR = 0.05) in ZDF fracture callus, most with known roles in inflammation. Conclusion: These findings suggest that elevated or prolonged inflammation contributes to delayed fracture healing in T2DM. The identified genes may be used as biomarkers to monitor and treat delayed fracture healing in diabetic patients.

8.
Osteoarthritis Cartilage ; 31(9): 1224-1233, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37178862

RESUMO

OBJECTIVE: It is unclear if different factors influence osteoarthritis (OA) progression and degenerative changes characterising OA disease in hip and knee. We investigated the difference between hip OA and knee OA at the subchondral bone (SCB) tissue and cellular level, relative to the degree of cartilage degeneration. DESIGN: Bone samples were collected from 11 patients (aged 70.4 ± 10.7years) undergoing knee arthroplasty and 8 patients (aged 62.3 ± 13.4years) undergoing hip arthroplasty surgery. Trabecular bone microstructure, osteocyte-lacunar network, and bone matrix vascularity were evaluated using synchrotron micro-CT imaging. Additionally, osteocyte density, viability, and connectivity were determined histologically. RESULTS: The associations between severe cartilage degeneration and increase of bone volume fraction (%) [- 8.7, 95% CI (-14.1, -3.4)], trabecular number (#/mm) [- 1.5, 95% CI (-0.8, -2.3)], osteocyte lacunar density (#/mm3) [4714.9; 95% CI (2079.1, 7350.6)] and decrease of trabecular separation (mm) [- 0.07, 95% CI (0.02, 0.1)] were found in both knee and hip OA. When compared to knee OA, hip OA was characterised by larger (µm3) but less spheric osteocyte lacunae [47.3; 95% CI (11.2, 83.4), - 0.04; 95% CI (-0.06, -0.02), respectively], lower vascular canal density (#/mm3) [- 22.8; 95% CI (-35.4, -10.3)], lower osteocyte cell density (#/mm2) [- 84.2; 95% CI (-102.5, -67.4)], and less senescent (#/mm2) but more apoptotic osteocytes (%) [- 2.4; 95% CI (-3.6, -1.2), 24.9; 95% CI (17.7, 32.1)], respectively. CONCLUSION: SCB from hip OA and knee OA exhibits different characteristics at the tissue and cellular levels, suggesting different mechanisms of OA progression in different joints.


Assuntos
Cartilagem Articular , Osteoartrite do Quadril , Osteoartrite do Joelho , Humanos , Osteoartrite do Quadril/diagnóstico por imagem , Osteoartrite do Quadril/patologia , Osso Esponjoso/diagnóstico por imagem , Osso Esponjoso/patologia , Síncrotrons , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/patologia , Osteoartrite do Joelho/diagnóstico por imagem , Osteoartrite do Joelho/patologia , Microtomografia por Raio-X/métodos , Cartilagem Articular/diagnóstico por imagem , Cartilagem Articular/patologia
9.
J Biomech ; 144: 111275, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36063585

RESUMO

Postoperative weight bearing has the potential to generate fragmental motion of surgically repaired tibial plateau fractures (TPFs), which may contribute to loss of fracture reduction. The effect of loading on the internal distribution of fragmentary displacements is currently unknown. The aim of this study was to determine the internal displacements of surgically repaired split TPFs due to a three-bodyweight load, using large-volume micro-CT imaging and image correlation. Fractures were generated and surgically repaired for two cadaveric specimens. Load was applied to the specimens inside a large-volume micro-CT system and scanned at 0.046 mm isotropic voxel size. Pre- and post-loading images were paired, co-registered, and internal fragmentary displacements quantified. Internal fragmental displacements of the cadaveric bones were compared to in vivo displacements measured in the lateral split fragments of TPFs in a clinical cohort of patients who had similar surgical repair and were prescribed pain tolerated postoperative weight bearing. The split fragments of cadaveric specimens displaced, on average, less than 0.3 mm, consistent with in vivo measurements. Specimen one rotated around the mediolateral axis, while specimen two displaced consistently caudally. Specimen two also had varying displacements along the mediolateral axis where, at the fracture site, the fragment displaced caudally and laterally, while the most lateral edge of the tibial plateau displaced caudally and medially. The methods applied in this study can be used to measure internal fragmental motion within TPFs.


Assuntos
Fixação Interna de Fraturas , Fraturas da Tíbia , Humanos , Fixação Interna de Fraturas/métodos , Microtomografia por Raio-X , Fraturas da Tíbia/diagnóstico por imagem , Fraturas da Tíbia/cirurgia , Suporte de Carga , Cadáver
10.
Bone Res ; 10(1): 53, 2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-35961964

RESUMO

Approximately 40% of treatments of chronic and recurrent osteomyelitis fail in part due to bacterial persistence. Staphylococcus aureus, the predominant pathogen in human osteomyelitis, is known to persist by phenotypic adaptation as small-colony variants (SCVs) and by formation of intracellular reservoirs, including those in major bone cell types, reducing susceptibility to antibiotics. Intracellular infections with S. aureus are difficult to treat; however, there are no evidence-based clinical guidelines addressing these infections in osteomyelitis. We conducted a systematic review of the literature to determine the demonstrated efficacy of all antibiotics against intracellular S. aureus relevant to osteomyelitis, including protein biosynthesis inhibitors (lincosamides, streptogramins, macrolides, oxazolidines, tetracyclines, fusidic acid, and aminoglycosides), enzyme inhibitors (fluoroquinolones and ansamycines), and cell wall inhibitors (beta-lactam inhibitors, glycopeptides, fosfomycin, and lipopeptides). The PubMed and Embase databases were screened for articles related to intracellular S. aureus infections that compared the effectiveness of multiple antibiotics or a single antibiotic together with another treatment, which resulted in 34 full-text articles fitting the inclusion criteria. The combined findings of these studies were largely inconclusive, most likely due to the plethora of methodologies utilized. Therefore, the reported findings in the context of the models employed and possible solutions for improved understanding are explored here. While rifampicin, oritavancin, linezolid, moxifloxacin and oxacillin were identified as the most effective potential intracellular treatments, the scientific evidence for these is still relatively weak. We advocate for more standardized research on determining the intracellular effectiveness of antibiotics in S. aureus osteomyelitis to improve treatments and patient outcomes.

11.
Biomolecules ; 12(7)2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35883516

RESUMO

The regulation of vitamin D3 actions in humans occurs mainly through the Cytochrome P450 24-hydroxylase (CYP24A1) enzyme activity. CYP24A1 hydroxylates both 25-hydroxycholecalciferol (25(OH)D3) and 1,25-dihydroxycholecalciferol (1,25(OH)2D3), which is the first step of vitamin D catabolism. An abnormal status of the upregulation of CYP24A1 occurs in many diseases, including chronic kidney disease (CKD). CYP24A1 upregulation in CKD and diminished activation of vitamin D3 contribute to secondary hyperparathyroidism (SHPT), progressive bone deterioration, and soft tissue and cardiovascular calcification. Previous studies have indicated that CYP24A1 inhibition may be an effective strategy to increase endogenous vitamin D activity and decrease SHPT. This study has designed and synthesized a novel C-24 O-methyloxime analogue of vitamin D3 (VD1-6) to have specific CYP24A1 inhibitory properties. VD1-6 did not bind to the vitamin D receptor (VDR) in concentrations up to 10-7 M, assessed by a VDR binding assay. The absence of VDR binding by VD1-6 was confirmed in human embryonic kidney HEK293T cultures through the lack of CYP24A1 induction. However, in silico docking experiments demonstrated that VD1-6 was predicted to have superior binding to CYP24A1, when compared to that of 1,25(OH)2D3. The inhibition of CYP24A1 by VD1-6 was also evident by the synergistic potentiation of 1,25(OH)2D3-mediated transcription and reduced 1,25(OH)2D3 catabolism over 24 h. A further indication of CYP24A1 inhibition by VD1-6 was the reduced accumulation of the 24,25(OH)D3, the first metabolite of 25(OH)D catabolism by CYP24A1. Our findings suggest the potent CYP24A1 inhibitory properties of VD1-6 and its potential for testing as an alternative therapeutic candidate for treating SHPT.


Assuntos
Colecalciferol , Insuficiência Renal Crônica , Colecalciferol/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Células HEK293 , Humanos , Oximas , Receptores de Calcitriol/metabolismo , Vitamina D , Vitamina D3 24-Hidroxilase/metabolismo
12.
J Mech Behav Biomed Mater ; 133: 105311, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35716527

RESUMO

Estimating strain distribution in the acetabulum before and after the development of peri-prosthetic osteolytic lesions secondary to total hip arthroplasty may assist with understanding the pathogenesis of this condition. This could be achieved by performing patient-specific finite element analysis of (1) total hip arthroplasty recipients with developed acetabular osteolytic lesions, and (2) models simulating the patient's pelvis and implant immediately after primary surgery. State of the art patient-specific total hip arthroplasty finite element analysis simulations obtain trabecular bone material properties from Hounsfield units within computed tomography (CT) scans of patients. However, this is not feasible when an implant is already in situ due to metal artefact disruption and, in turn, incorrectly reproduced Hounsfield units. Therefore, alternative methods of assigning trabecular bone material properties within such models were tested and strain results compared. It was found that assigning set material properties throughout the trabecular bone geometry was sufficient for the desired application. Simulating the primary implant and pelvis requires geometric and material based assumptions. Therefore, comparisons were made between strain values obtained from simulated primary models, from state of the art methods using material properties obtained from intact bone within a CT scan, and from models with osteolytic lesions. Strain values found using the finite element models simulating the pelvis before osteolytic lesion developed were considerably closer to those found using state of the art methods than those found for the bone loss models. These models could be used to determine relationships between strain distribution and factors such as bone loss.


Assuntos
Osso Esponjoso , Osteólise , Acetábulo/diagnóstico por imagem , Acetábulo/cirurgia , Análise de Elementos Finitos , Humanos , Osteólise/diagnóstico por imagem , Osteólise/etiologia , Osteólise/patologia , Pelve/diagnóstico por imagem
13.
Calcif Tissue Int ; 111(4): 430-444, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35618777

RESUMO

Osteopetrosis is a heterogeneous group of rare hereditary diseases characterized by increased bone mass of poor quality. Autosomal-dominant osteopetrosis type II (ADOII) is most often caused by mutation of the CLCN7 gene leading to impaired bone resorption. Autosomal recessive osteopetrosis (ARO) is a more severe form and is frequently accompanied by additional morbidities. We report an adult male presenting with classical clinical and radiological features of ADOII. Genetic analyses showed no amino-acid-converting mutation in CLCN7 but an apparent haploinsufficiency and suppression of CLCN7 mRNA levels in peripheral blood mononuclear cells. Next generation sequencing revealed low-frequency intronic homozygous variations in CLCN7, suggesting recessive inheritance. In silico analysis of an intronic duplication c.595-120_595-86dup revealed additional binding sites for Serine- and Arginine-rich Splicing Factors (SRSF), which is predicted to impair CLCN7 expression. Quantitative backscattered electron imaging and histomorphometric analyses revealed bone tissue and material abnormalities. Giant osteoclasts were present and additionally to lamellar bone, and abundant woven bone and mineralized cartilage were observed, together with increased frequency and thickness of cement lines. Bone mineralization density distribution (BMDD) analysis revealed markedly increased average mineral content of the dense bone (CaMean T-score + 10.1) and frequency of bone with highest mineral content (CaHigh T-score + 19.6), suggesting continued mineral accumulation and lack of bone remodelling. Osteocyte lacunae sections (OLS) characteristics were unremarkable except for an unusually circular shape. Together, our findings suggest that the reduced expression of CLCN7 mRNA in osteoclasts, and possibly also osteocytes, causes poorly remodelled bone with abnormal bone matrix with high mineral content. This together with the lack of adequate bone repair mechanisms makes the material brittle and prone to fracture. While the skeletal phenotype and medical history were suggestive of ADOII, genetic analysis revealed that this is a possible mild case of ARO due to deep intronic mutation.


Assuntos
Canais de Cloreto , Osteopetrose , Canais de Cloreto/genética , Homozigoto , Humanos , Leucócitos Mononucleares/metabolismo , Masculino , Mutação , Osteopetrose/diagnóstico , Osteopetrose/genética , Osteopetrose/metabolismo , Fenótipo , RNA Mensageiro
15.
IEEE Trans Biomed Eng ; 69(7): 2268-2275, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34990350

RESUMO

OBJECTIVE: Using a musculoskeletal modelling framework, we aimed to (1) estimate knee joint loading using static optimization (SO); (2) explore different calibration functions in electromyogram (EMG)-informed models used in estimating knee load; and (3) determine, when using an EMG-informed stochastic method, if the measured joint loadings are solutions to the muscle redundancy problem when investigating only the uncertainty in muscle forces. METHODS: Musculoskeletal models for three individuals with instrumented knee replacements were generated. Muscle forces were calculated using SO, EMG-informed, and EMG-informed stochastic methods. Measured knee joint loads from the prostheses were compared to the SO and EMG-informed solutions. Root mean square error (RMSE) in joint load estimation was calculated, and the muscle force ranges were compared. RESULTS: The RMSE ranged between 192-674 N, 152-487 N, and 7-108 N for the SO, the calibrated EMG-informed solution, and the best fit stochastic result, respectively. The stochastic method produced solution spaces encompassing the measured joint loading up to 98% of stance. CONCLUSION: Uncertainty in muscle forces can account for total knee loading and it is recommended that, where possible, EMG measurements should be included to estimate knee joint loading. SIGNIFICANCE: This work shows that the inclusion of EMG-informed modelling allows for better estimation of knee joint loading when compared to SO.


Assuntos
Músculo Esquelético , Caminhada , Fenômenos Biomecânicos , Eletromiografia , Marcha/fisiologia , Humanos , Articulação do Joelho/fisiologia , Articulação do Joelho/cirurgia , Modelos Biológicos , Músculo Esquelético/fisiologia , Próteses e Implantes , Caminhada/fisiologia
16.
J Orthop Res ; 40(2): 396-408, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33871103

RESUMO

The objectives of this study were to (1) develop a semiautomated method to obtain lesion volume and bone mineral density (BMD) in terms of Hounsfield units from pelvic computed tomography (CT) scans in three regions of interest, and (2) assess accuracy and reliability of the method based on cadaveric CT scans. Image artefacts due to metal implants reduce CT clarity and are more severe with more than one implant in situ. Therefore, accuracy and reliability tests were performed with varying numbers of total hip arthroplasties implanted. To test the accuracy of lesion size measurements, microcomputed tomography was used as a reference. Mean absolute error ranged from 36 to 284 mm3 after five measurements. Intra- and inter-operator reliability of the entire method was measured for a selection of parameters. All coefficient of variation values were good to excellent for CT scans of the native pelvic anatomy and a CT scans of the same pelvis with one and two implants in situ. Accuracy of quantifying lesion volume decreased with decreasing CT image clarity by 0.6%-3.6% mean absolute relative error. Reliability of lesion volume measurement decreased with decreasing CT clarity. This was also the case for reliability of BMD measurements in the region most disrupted by metal artefact. The presented method proposes an approach for quantifying bone loss which has been proven to be accurate, reliable, and clinically applicable.


Assuntos
Artroplastia de Quadril , Densidade Óssea , Acetábulo/diagnóstico por imagem , Acetábulo/cirurgia , Humanos , Reprodutibilidade dos Testes , Microtomografia por Raio-X
17.
Front Cell Infect Microbiol ; 11: 781022, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34805001

RESUMO

Infectious osteomyelitis associated with periprosthetic joint infections is often recalcitrant to treatment and has a high rate of recurrence. In the case of Staphylococcus aureus, the most common pathogen in all forms of osteomyelitis, this may be attributed in part to residual intracellular infection of host cells, yet this is not generally considered in the treatment strategy. Osteocytes represent a unique cell type in this context due to their abundance, their formation of a syncytium throughout the bone that could facilitate bacterial spread and their relative inaccessibility to professional immune cells. As such, there is potential value in studying the host-pathogen interactions in the context of this cell type in a replicable and scalable in vitro model. Here, we examined the utility of the human osteosarcoma cell line SaOS2 differentiated to an osteocyte-like stage (SaOS2-OY) as an intracellular infection model for S. aureus. We demonstrate that S. aureus is capable of generating stable intracellular infections in SaOS2-OY cells but not in undifferentiated, osteoblast-like SaOS2 cells (SaOS2-OB). In SaOS2-OY cells, S. aureus transitioned towards a quasi-dormant small colony variant (SCV) growth phenotype over a 15-day post-infection period. The infected cells exhibited changes in the expression of key immunomodulatory mediators that are consistent with the infection response of primary osteocytes. Thus, SaOS2-OY is an appropriate cell line model that may be predictive of the interactions between S. aureus and human osteocytes, and this will be useful for studying mechanisms of persistence and for testing the efficacy of potential antimicrobial strategies.


Assuntos
Osteomielite , Infecções Estafilocócicas , Linhagem Celular , Humanos , Osteócitos , Staphylococcus aureus
18.
Sci Rep ; 11(1): 22593, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34799645

RESUMO

Mesenchymal progenitors differentiate into several tissues including bone, cartilage, and adipose. Targeting these cells in vivo is challenging, making mesenchymal progenitor cell lines valuable tools to study tissue development. Mesenchymal stem cells (MSCs) can be isolated from humans and animals; however, obtaining homogenous, responsive cells in a reproducible fashion is challenging. As such, we developed two mesenchymal progenitor cell (MPC) lines, MPC1 and MPC2, generated from bone marrow of male C57BL/6 mice. These cells were immortalized using the temperature sensitive large T-antigen, allowing for thermal control of proliferation and differentiation. Both MPC1 and MPC2 cells are capable of osteogenic, adipogenic, and chondrogenic differentiation. Under osteogenic conditions, both lines formed mineralized nodules, and stained for alizarin red and alkaline phosphatase, while expressing osteogenic genes including Sost, Fgf23, and Dmp1. Sost and Dmp1 mRNA levels were drastically reduced with addition of parathyroid hormone, thus recapitulating in vivo responses. MPC cells secreted intact (iFGF23) and C-terminal (cFGF23) forms of the endocrine hormone FGF23, which was upregulated by 1,25 dihydroxy vitamin D (1,25D). Both lines also rapidly entered the adipogenic lineage, expressing adipose markers after 4 days in adipogenic media. MPC cells were also capable of chondrogenic differentiation, displaying increased expression of cartilaginous genes including aggrecan, Sox9, and Comp. With the ability to differentiate into multiple mesenchymal lineages and mimic in vivo responses of key regulatory genes/proteins, MPC cells are a valuable model to study factors that regulate mesenchymal lineage allocation as well as the mechanisms that dictate transcription, protein modification, and secretion of these factors.


Assuntos
Adipócitos/citologia , Técnicas de Cultura de Células , Condrócitos/citologia , Células-Tronco Mesenquimais/citologia , Osteócitos/citologia , Animais , Diferenciação Celular , Linhagem Celular , Linhagem da Célula , Proliferação de Células , Fator de Crescimento de Fibroblastos 23/metabolismo , Imunofenotipagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/metabolismo
19.
JBMR Plus ; 5(9): e10529, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34532614

RESUMO

Bone marrow mesenchymal progenitor cells are precursors for various cell types including osteoblasts, adipocytes, and chondrocytes. The external environment and signals act to direct the pathway of differentiation. Importantly, situations such as aging and chronic kidney disease display alterations in the balance of osteoblast and adipocyte differentiation, adversely affecting bone integrity. Iron deficiency, which can often occur during aging and chronic kidney disease, is associated with reduced bone density. The purpose of this study was to assess the effects of iron deficiency on the capacity of progenitor cell differentiation pathways. Mouse and human progenitor cells, differentiated under standard osteoblast and adipocyte protocols in the presence of the iron chelator deferoxamine (DFO), were used. Under osteogenic conditions, 5µM DFO significantly impaired expression of critical osteoblast genes, including osteocalcin, type 1 collagen, and dentin matrix protein 1. This led to a reduction in alkaline phosphatase activity and impaired mineralization. Despite prolonged exposure to chronic iron deficiency, cells retained viability as well as normal hypoxic responses with significant increases in transferrin receptor and protein accumulation of hypoxia inducible factor 1α. Similar concentrations of DFO were used when cells were maintained in adipogenic conditions. In contrast to osteoblast differentiation, DFO modestly suppressed adipocyte gene expression of peroxisome-proliferating activated receptor gamma, lipoprotein lipase, and adiponectin at earlier time points with normalization at later stages. Lipid accumulation was also similar in all conditions. These data suggest the critical importance of iron in osteoblast differentiation, and as long as the external stimuli are present, iron deficiency does not impede adipogenesis. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

20.
J Bone Miner Res ; 36(11): 2106-2115, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34289172

RESUMO

Cognitive decline and osteoporosis often coexist and some evidence suggests a causal link. However, there are no data on the longitudinal relationship between cognitive decline, bone loss and fracture risk, independent of aging. This study aimed to determine the association between: (i) cognitive decline and bone loss; and (ii) clinically significant cognitive decline (≥3 points) on Mini Mental State Examination (MMSE) over the first 5 years and subsequent fracture risk over the following 10 years. A total of 1741 women and 620 men aged ≥65 years from the population-based Canadian Multicentre Osteoporosis Study were followed from 1997 to 2013. Association between cognitive decline and (i) bone loss was estimated using mixed-effects models; and (ii) fracture risk was estimated using adjusted Cox models. Over 95% of participants had normal cognition at baseline (MMSE ≥ 24). The annual % change in MMSE was similar for both genders (women -0.33, interquartile range [IQR] -0.70 to +0.00; and men -0.34, IQR: -0.99 to 0.01). After multivariable adjustment, cognitive decline was associated with bone loss in women (6.5%; 95% confidence interval [CI], 3.2% to 9.9% for each percent decline in MMSE from baseline) but not men. Approximately 13% of participants experienced significant cognitive decline by year 5. In women, fracture risk was increased significantly (multivariable hazard ratio [HR], 1.61; 95% CI, 1.11 to 2.34). There were too few men to analyze. There was a significant association between cognitive decline and both bone loss and fracture risk, independent of aging, in women. Further studies are needed to determine mechanisms that link these common conditions. © 2021 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Disfunção Cognitiva , Osteoporose , Densidade Óssea , Canadá/epidemiologia , Disfunção Cognitiva/complicações , Disfunção Cognitiva/epidemiologia , Feminino , Humanos , Masculino , Osteoporose/complicações , Osteoporose/epidemiologia , Estudos Prospectivos , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA