Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 430(12): 1786-1798, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29704491

RESUMO

We have engineered a panel of novel Fn3 scaffold-based proteins that bind with high specificity and affinity to each of the individual mouse Fcγ receptors (mFcγR). These binders were expressed as fusions to anti-tumor antigen single-chain antibodies and mouse serum albumin, creating opsonizing agents that invoke only a single mFcγR response rather than the broader activity of natural Fc isotypes, as well as all previously reported Fc mutants. This panel isolated the capability of each of the four mFcγRs to contribute to macrophage phagocytosis of opsonized tumor cells and in vivo tumor growth control with these monospecific opsonizing fusion proteins. All activating receptors (mFcγRI, mFcγRIII, and mFcγRIV) were capable of driving specific tumor cell phagocytosis to an equivalent extent, while mFcγRII, the inhibitory receptor, did not drive phagocytosis. Monospecific opsonizing fusion proteins that bound mFcγRI alone controlled tumor growth to an extent similar to the most active IgG2a murine isotype. As expected, binding to the inhibitory mFcγRII did not delay tumor growth, but unexpectedly, mFcγRIII also failed to control tumor growth. mFcγRIV exhibited detectable but lesser tumor-growth control leading to less overall survival compared to mFcγRI. Interestingly, in vivo macrophage depletion demonstrates their importance in tumor control with mFcγRIV engagement, but not with mFcγRI. This panel of monospecific mFcγR-binding proteins provides a toolkit for isolating the functional effects of each mFcγR in the context of an intact immune system.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Antineoplásicos Imunológicos/administração & dosagem , Fibronectinas/química , Melanoma Experimental/tratamento farmacológico , Engenharia de Proteínas/métodos , Receptores de IgG/imunologia , Animais , Anticorpos Biespecíficos/química , Anticorpos Biespecíficos/farmacologia , Anticorpos Monoclonais/química , Anticorpos Monoclonais/farmacologia , Antineoplásicos Imunológicos/química , Antineoplásicos Imunológicos/farmacologia , Células HEK293 , Humanos , Melanoma Experimental/imunologia , Camundongos , Modelos Moleculares , Fagocitose , Receptores de IgG/química , Homologia Estrutural de Proteína , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Nature ; 536(7614): 81-85, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27437587

RESUMO

The widespread view of bacteria as strictly pathogenic has given way to an appreciation of the prevalence of some beneficial microbes within the human body. It is perhaps inevitable that some bacteria would evolve to preferentially grow in environments that harbor disease and thus provide a natural platform for the development of engineered therapies. Such therapies could benefit from bacteria that are programmed to limit bacterial growth while continually producing and releasing cytotoxic agents in situ. Here we engineer a clinically relevant bacterium to lyse synchronously ata threshold population density and to release genetically encoded cargo. Following quorum lysis, a small number of surviving bacteria reseed the growing population, thus leading to pulsatile delivery cycles. We used microfluidic devices to characterize the engineered lysis strain and we demonstrate its potential as a drug delivery platform via co-culture with human cancer cells in vitro. Asa proof of principle, we tracked the bacterial population dynamics in ectopic syngeneic colorectal tumours in mice via a luminescent reporter. The lysis strain exhibits pulsatile population dynamics in vivo, with mean bacterial luminescence that remained two orders of magnitude lower than an unmodified strain. Finally, guided by previous findings that certain bacteria can enhance the efficacy of standard therapies, we orally administered the lysis strain alone or in combination with a clinical chemotherapeutic to a syngeneic mouse transplantation model of hepatic colorectal metastases. We found that the combination of both circuit-engineered bacteria and chemotherapy leads to a notable reduction of tumour activity along with a marked survival benefit over either therapy alone.Our approach establishes a methodology for leveraging the tools of synthetic biology to exploit the natural propensity for certain bacteria to colonize disease sites.


Assuntos
Bacteriólise , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/microbiologia , Sistemas de Liberação de Medicamentos/métodos , Salmonella/metabolismo , Administração Oral , Animais , Técnicas de Cocultura , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Simulação por Computador , Feminino , Neoplasias Hepáticas/secundário , Luminescência , Camundongos , Metástase Neoplásica , Transplante de Neoplasias , Percepção de Quorum , Salmonella/genética , Biologia Sintética/métodos , Transplante Isogênico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA