Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nature ; 555(7695): 216-219, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29516997

RESUMO

The familiar axisymmetric zones and belts that characterize Jupiter's weather system at lower latitudes give way to pervasive cyclonic activity at higher latitudes. Two-dimensional turbulence in combination with the Coriolis ß-effect (that is, the large meridionally varying Coriolis force on the giant planets of the Solar System) produces alternating zonal flows. The zonal flows weaken with rising latitude so that a transition between equatorial jets and polar turbulence on Jupiter can occur. Simulations with shallow-water models of giant planets support this transition by producing both alternating flows near the equator and circumpolar cyclones near the poles. Jovian polar regions are not visible from Earth owing to Jupiter's low axial tilt, and were poorly characterized by previous missions because the trajectories of these missions did not venture far from Jupiter's equatorial plane. Here we report that visible and infrared images obtained from above each pole by the Juno spacecraft during its first five orbits reveal persistent polygonal patterns of large cyclones. In the north, eight circumpolar cyclones are observed about a single polar cyclone; in the south, one polar cyclone is encircled by five circumpolar cyclones. Cyclonic circulation is established via time-lapse imagery obtained over intervals ranging from 20 minutes to 4 hours. Although migration of cyclones towards the pole might be expected as a consequence of the Coriolis ß-effect, by which cyclonic vortices naturally drift towards the rotational pole, the configuration of the cyclones is without precedent on other planets (including Saturn's polar hexagonal features). The manner in which the cyclones persist without merging and the process by which they evolve to their current configuration are unknown.

2.
Astrobiology ; 16(12): 977-996, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27925795

RESUMO

In 1976, the Viking landers carried out the most comprehensive search for organics and microbial life in the martian regolith. Their results indicate that Mars' surface is lifeless and, surprisingly, depleted in organics at part-per-billion levels. Several biology experiments on the Viking landers gave controversial results that have since been explained by the presence of oxidizing agents on the surface of Mars. These oxidants may degrade abiotic or biological organics, resulting in their nondetection in the regolith. As several exploration missions currently focus on the detection of organics on Mars (or will do so in the near future), knowledge of the oxidative state of the surface is fundamental. It will allow for determination of the capability of organics to survive on a geological timescale, the most favorable places to seek them, and the best methods to process the samples collected at the surface. With this aim, we review the main oxidants assumed to be present on Mars, their possible formation pathways, and those laboratory studies in which their reactivity with organics under Mars-like conditions has been evaluated. Among the oxidants assumed to be present on Mars, only four have been detected so far: perchlorate ions (ClO4-) in salts, hydrogen peroxide (H2O2) in the atmosphere, and clays and metal oxides composing surface minerals. Clays have been suggested as catalysts for the oxidation of organics but are treated as oxidants in the following to keep the structure of this article straightforward. This work provides an insight into the oxidizing potential of the surface of Mars and an estimate of the stability of organic matter in an oxidizing environment. Key Words: Mars surface-Astrobiology-Oxidant-Chemical reactions. Astrobiology 16, 977-996.


Assuntos
Meio Ambiente Extraterreno , Marte , Oxidantes/química , Voo Espacial , Oxirredução , Solo
3.
J Geophys Res Planets ; 120(3): 495-514, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26690960

RESUMO

The Sample Analysis at Mars (SAM) instrument on board the Mars Science Laboratory Curiosity rover is designed to conduct inorganic and organic chemical analyses of the atmosphere and the surface regolith and rocks to help evaluate the past and present habitability potential of Mars at Gale Crater. Central to this task is the development of an inventory of any organic molecules present to elucidate processes associated with their origin, diagenesis, concentration, and long-term preservation. This will guide the future search for biosignatures. Here we report the definitive identification of chlorobenzene (150-300 parts per billion by weight (ppbw)) and C2 to C4 dichloroalkanes (up to 70 ppbw) with the SAM gas chromatograph mass spectrometer (GCMS) and detection of chlorobenzene in the direct evolved gas analysis (EGA) mode, in multiple portions of the fines from the Cumberland drill hole in the Sheepbed mudstone at Yellowknife Bay. When combined with GCMS and EGA data from multiple scooped and drilled samples, blank runs, and supporting laboratory analog studies, the elevated levels of chlorobenzene and the dichloroalkanes cannot be solely explained by instrument background sources known to be present in SAM. We conclude that these chlorinated hydrocarbons are the reaction products of Martian chlorine and organic carbon derived from Martian sources (e.g., igneous, hydrothermal, atmospheric, or biological) or exogenous sources such as meteorites, comets, or interplanetary dust particles. KEY POINTS: First in situ evidence of nonterrestrial organics in Martian surface sediments Chlorinated hydrocarbons identified in the Sheepbed mudstone by SAM Organics preserved in sample exposed to ionizing radiation and oxidative condition.

4.
Science ; 347(6220): 412-4, 2015 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-25515119

RESUMO

The deuterium-to-hydrogen (D/H) ratio in strongly bound water or hydroxyl groups in ancient martian clays retains the imprint of the water of formation of these minerals. Curiosity's Sample Analysis at Mars (SAM) experiment measured thermally evolved water and hydrogen gas released between 550° and 950°C from samples of Hesperian-era Gale crater smectite to determine this isotope ratio. The D/H value is 3.0 (±0.2) times the ratio in standard mean ocean water. The D/H ratio in this ~3-billion-year-old mudstone, which is half that of the present martian atmosphere but substantially higher than that expected in very early Mars, indicates an extended history of hydrogen escape and desiccation of the planet.

5.
Science ; 343(6169): 1245267, 2014 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-24324276

RESUMO

H2O, CO2, SO2, O2, H2, H2S, HCl, chlorinated hydrocarbons, NO, and other trace gases were evolved during pyrolysis of two mudstone samples acquired by the Curiosity rover at Yellowknife Bay within Gale crater, Mars. H2O/OH-bearing phases included 2:1 phyllosilicate(s), bassanite, akaganeite, and amorphous materials. Thermal decomposition of carbonates and combustion of organic materials are candidate sources for the CO2. Concurrent evolution of O2 and chlorinated hydrocarbons suggests the presence of oxychlorine phase(s). Sulfides are likely sources for sulfur-bearing species. Higher abundances of chlorinated hydrocarbons in the mudstone compared with Rocknest windblown materials previously analyzed by Curiosity suggest that indigenous martian or meteoritic organic carbon sources may be preserved in the mudstone; however, the carbon source for the chlorinated hydrocarbons is not definitively of martian origin.


Assuntos
Exobiologia , Meio Ambiente Extraterreno/química , Hidrocarbonetos Clorados/análise , Marte , Compostos Orgânicos Voláteis/análise , Baías , Dióxido de Carbono/análise , Dióxido de Carbono/química , Sedimentos Geológicos/análise , Sedimentos Geológicos/química , Oxigênio/análise , Oxigênio/química , Sulfetos/análise , Sulfetos/química , Água/análise , Água/química
6.
Science ; 341(6153): 1238937, 2013 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-24072926

RESUMO

Samples from the Rocknest aeolian deposit were heated to ~835°C under helium flow and evolved gases analyzed by Curiosity's Sample Analysis at Mars instrument suite. H2O, SO2, CO2, and O2 were the major gases released. Water abundance (1.5 to 3 weight percent) and release temperature suggest that H2O is bound within an amorphous component of the sample. Decomposition of fine-grained Fe or Mg carbonate is the likely source of much of the evolved CO2. Evolved O2 is coincident with the release of Cl, suggesting that oxygen is produced from thermal decomposition of an oxychloride compound. Elevated δD values are consistent with recent atmospheric exchange. Carbon isotopes indicate multiple carbon sources in the fines. Several simple organic compounds were detected, but they are not definitively martian in origin.

7.
Nature ; 438(7069): 796-9, 2005 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-16319825

RESUMO

Aerosols in Titan's atmosphere play an important role in determining its thermal structure. They also serve as sinks for organic vapours and can act as condensation nuclei for the formation of clouds, where the condensation efficiency will depend on the chemical composition of the aerosols. So far, however, no direct information has been available on the chemical composition of these particles. Here we report an in situ chemical analysis of Titan's aerosols by pyrolysis at 600 degrees C. Ammonia (NH3) and hydrogen cyanide (HCN) have been identified as the main pyrolysis products. This clearly shows that the aerosol particles include a solid organic refractory core. NH3 and HCN are gaseous chemical fingerprints of the complex organics that constitute this core, and their presence demonstrates that carbon and nitrogen are in the aerosols.


Assuntos
Meio Ambiente Extraterreno/química , Compostos Orgânicos/análise , Saturno , Aerossóis/química , Amônia/análise , Atmosfera/química , Carbono/análise , Cromatografia Gasosa-Espectrometria de Massas , Gases/análise , Gases/química , Temperatura Alta , Cianeto de Hidrogênio/análise , Nitrogênio/análise
8.
Nature ; 438(7069): 779-84, 2005 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-16319830

RESUMO

Saturn's largest moon, Titan, remains an enigma, explored only by remote sensing from Earth, and by the Voyager and Cassini spacecraft. The most puzzling aspects include the origin of the molecular nitrogen and methane in its atmosphere, and the mechanism(s) by which methane is maintained in the face of rapid destruction by photolysis. The Huygens probe, launched from the Cassini spacecraft, has made the first direct observations of the satellite's surface and lower atmosphere. Here we report direct atmospheric measurements from the Gas Chromatograph Mass Spectrometer (GCMS), including altitude profiles of the constituents, isotopic ratios and trace species (including organic compounds). The primary constituents were confirmed to be nitrogen and methane. Noble gases other than argon were not detected. The argon includes primordial 36Ar, and the radiogenic isotope 40Ar, providing an important constraint on the outgassing history of Titan. Trace organic species, including cyanogen and ethane, were found in surface measurements.


Assuntos
Atmosfera/química , Meio Ambiente Extraterreno/química , Cromatografia Gasosa-Espectrometria de Massas/instrumentação , Voo Espacial , Argônio/análise , Carbono/análise , Carbono/química , Isótopos/análise , Metano/análise , Metano/química , Nitrogênio/análise , Nitrogênio/química , Voo Espacial/instrumentação
9.
Planet Space Sci ; 47(10-11): 1243-62, 1999.
Artigo em Inglês | MEDLINE | ID: mdl-11543193

RESUMO

We present our current understanding of the composition, vertical mixing, cloud structure and the origin of the atmospheres of Jupiter and Saturn. Available observations point to a much more vigorous vertical mixing in Saturn's middle-upper atmosphere than in Jupiter's. The nearly cloud-free nature of the Galileo probe entry site, a 5-micron hotspot, is consistent with the depletion of condensable volatiles to great depths, which is attributed to local meteorology. Somewhat similar depletion of water may be present in the 5-micron bright regions of Saturn also. The supersolar abundances of heavy elements, particularly C and S in Jupiter's atmosphere and C in Saturn's, as well as the progressive increase of C from Jupiter to Saturn and beyond, tend to support the icy planetesimal model of the formation of the giant planets and their atmospheres. However, much work remains to be done, especially in the area of laboratory studies, including identification of possible new microwave absorbers, and modelling, in order to resolve the controversy surrounding the large discrepancy between Jupiter's global ammonia abundance, hence the nitrogen elemental ratio, derived from the earth-based microwave observations and that inferred from the analysis of the Galileo probe-orbiter radio attenuation data for the hotspot. We look forward to the observations from Cassini-Huygens spacecraft which are expected to result not only in a rich harvest of information for Saturn, but a better understanding of the formation of the giant planets and their atmospheres when these data are combined with those that exist for Jupiter.


Assuntos
Atmosfera/química , Evolução Planetária , Júpiter , Modelos Químicos , Saturno , Amônia/análise , Amônia/química , Astronomia/instrumentação , Atmosfera/análise , Elementos Químicos , Sulfeto de Hidrogênio/análise , Sulfeto de Hidrogênio/química , Espectrometria de Massas/instrumentação , Micro-Ondas , Fotoquímica , Astronave/instrumentação , Água
10.
Adv Space Res ; 21(11): 1455-61, 1998.
Artigo em Inglês | MEDLINE | ID: mdl-11541457

RESUMO

The Galileo Probe entered the atmosphere of Jupiter on December 7, 1995. Measurements of the chemical and isotopic composition of the Jovian atmosphere were obtained by the mass spectrometer during the descent over the 0.5 to 21 bar pressure region over a time period of approximately 1 hour. The sampling was either of atmospheric gases directly introduced into the ion source of the mass spectrometer through capillary leaks or of gas, which had been chemically processed to enhance the sensitivity of the measurement to trace species or noble gases. The analysis of this data set continues to be refined based on supporting laboratory studies on an engineering unit. The mixing ratios of the major constituents of the atmosphere hydrogen and helium have been determined as well as mixing ratios or upper limits for several less abundant species including: methane, water, ammonia, ethane, ethylene, propane, hydrogen sulfide, neon, argon, krypton, and xenon. Analysis also suggests the presence of trace levels of other 3 and 4 carbon hydrocarbons, or carbon and nitrogen containing species, phosphine, hydrogen chloride, and of benzene. The data set also allows upper limits to be set for many species of interest which were not detected. Isotope ratios were measured for 3He/4He, D/H, 13C/12C, 20Ne/22Ne, 38Ar/36Ar and for isotopes of both Kr and Xe.


Assuntos
Atmosfera/química , Meio Ambiente Extraterreno , Gases/análise , Júpiter , Voo Espacial/instrumentação , Atmosfera/análise , Pressão Atmosférica , Hélio/análise , Hidrocarbonetos/análise , Hidrogênio/análise , Espectrometria de Massas , Gases Nobres/análise , Astronave/instrumentação
11.
J Geophys Res ; 103(E10): 22831-45, 1998 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-11543372

RESUMO

The Galileo probe mass spectrometer determined the composition of the Jovian atmosphere for species with masses between 2 and 150 amu from 0.5 to 21.1 bars. This paper presents the results of analysis of some of the constituents detected: H2, He, Ne, Ar, Kr, Xe, CH4, NH3, H2O, H2S, C2 and C3 nonmethane hydrocarbons, and possibly PH3 and Cl. 4He/H2 in the Jovian atmosphere was measured to be 0.157 +/- 0.030. 13C/C12 was found to be 0.0108 +/- 0.0005, and D/H and 3He/4He were measured. Ne was depleted, < or = 0.13 times solar, Ar < or = 1.7 solar, Kr < or = 5 solar, and Xe < or = 5 solar. CH4 has a constant mixing ratio of (2.1 +/- 0.4) x 10(-3) (12C, 2.9 solar), where the mixing ratio is relative to H2. Upper limits to the H2O mixing ratio rose from 8 x 10(-7) at pressures <3.8 bars to (5.6 +/- 2.5) x 10(-5) (16O, 0.033 +/- 0.015 solar) at 11.7 bars and, provisionally, about an order of magnitude larger at 18.7 bars. The mixing ratio of H2S was <10(-6) at pressures less than 3.8 bars but rose from about 0.7 x 10(-5) at 8.7 bars to about 7.7 x 10(-5) (32S, 2.5 solar) above 15 bars. Only very large upper limits to the NH3 mixing ratio have been set at present. If PH3 and Cl were present, their mixing ratios also increased with pressure. Species were detected at mass peaks appropriate for C2 and C3 hydrocarbons. It is not yet clear which of these were atmospheric constituents and which were instrumentally generated. These measurements imply (1) fractionation of 4He, (2) a local, altitude-dependent depletion of condensables, probably because the probe entered the descending arm of a circulation cell, (3) that icy planetesimals made significant contributions to the volatile inventory, and (4) a moderate decrease in D/H but no detectable change in (D + 3He)/H in this part of the galaxy during the past 4.6 Gyr.


Assuntos
Atmosfera/química , Júpiter , Voo Espacial/instrumentação , Calibragem , Carbono/análise , Meio Ambiente Extraterreno , Gases/análise , Hélio/análise , Hidrocarbonetos/análise , Hidrogênio/análise , Espectrometria de Massas/instrumentação , Espectrometria de Massas/métodos , Gases Nobres/análise , Astronave/instrumentação
12.
Science ; 272(5263): 846-9, 1996 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-8629016

RESUMO

The composition of the jovian atmosphere from 0.5 to 21 bars along the descent trajectory was determined by a quadrupole mass spectrometer on the Galileo probe. The mixing ratio of He (helium) to H2 (hydrogen), 0.156, is close to the solar ratio. The abundances of methane, water, argon, neon, and hydrogen sulfide were measured; krypton and xenon were detected. As measured in the jovian atmosphere, the amount of carbon is 2.9 times the solar abundance relative to H2, the amount of sulfur is greater than the solar abundance, and the amount of oxygen is much less than the solar abundance. The neon abundance compared with that of hydrogen is about an order of magnitude less than the solar abundance. Isotopic ratios of carbon and the noble gases are consistent with solar values. The measured ratio of deuterium to hydrogen (D/H) of (5 +/- 2) x 10(-5) indicates that this ratio is greater in solar-system hydrogen than in local interstellar hydrogen, and the 3He/4He ratio of (1.1 +/- 0.2) x 10(-4) provides a new value for protosolar (solar nebula) helium isotopes. Together, the D/H and 3He/4He ratios are consistent with conversion in the sun of protosolar deuterium to present-day 3He.


Assuntos
Atmosfera , Meio Ambiente Extraterreno , Júpiter , Água/análise , Amônia/análise , Carbono/análise , Hélio/análise , Hidrogênio/análise , Espectrometria de Massas , Nitrogênio/análise , Gases Nobres/análise , Oxigênio/análise
13.
Science ; 267(5202): 1307-13, 1995 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-7871428

RESUMO

Ultraviolet spectra obtained with the Hubble Space Telescope identified at least 10 molecules and atoms in the perturbed stratosphere near the G impact site, most never before observed in Jupiter. The large mass of sulfur-containing material, more than 10(14) grams in S2 alone, indicates that many of the sulfur-containing molecules S2, CS2, CS, H2S, and S+ may be derived from a sulfur-bearing parent molecule native to Jupiter. If so, the fragment must have penetrated at least as deep as the predicted NH4SH cloud at a pressure of approximately 1 to 2 bars. Stratospheric NH3 was also observed, which is consistent with fragment penetration below the cloud tops. Approximately 10(7) grams of neutral and ionized metals were observed in emission, including Mg II, Mg I, Si I, Fe I, and Fe II. Oxygen-containing molecules were conspicuous by their absence; upper limits for SO2, SO, CO, SiO, and H2O are derived.


Assuntos
Meio Ambiente Extraterreno , Júpiter , Sistema Solar , Amônia/análise , Atmosfera , Dissulfeto de Carbono/análise , Ferro/análise , Magnésio/análise , Oxigênio/análise , Análise Espectral , Enxofre/análise , Água/análise
14.
Science ; 246(4936): 1459-66, 1989 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17756000

RESUMO

Results from the occultation of the sun by Neptune imply a temperature of 750 +/- 150 kelvins in the upper levels of the atmosphere (composed mostly of atomic and molecular hydrogen) and define the distributions of methane, acetylene, and ethane at lower levels. The ultraviolet spectrum of the sunlit atmosphere of Neptune resembles the spectra of the Jupiter, Saturn, and Uranus atmospheres in that it is dominated by the emissions of H Lyman alpha (340 +/- 20 rayleighs) and molecular hydrogen. The extreme ultraviolet emissions in the range from 800 to 1100 angstroms at the four planets visited by Voyager scale approximately as the inverse square of their heliocentric distances. Weak auroral emissions have been tentatively identified on the night side of Neptune. Airglow and occultation observations of Triton's atmosphere show that it is composed mainly of molecular nitrogen, with a trace of methane near the surface. The temperature of Triton's upper atmosphere is 95 +/- 5 kelvins, and the surface pressure is roughly 14 microbars.

15.
Science ; 233(4759): 74-9, 1986 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-17812892

RESUMO

Data from solar and stellar occultations of Uranus indicate a temperature of about 750 kelvins in the upper levels of the atmosphere (composed mostly of atomic and molecular hydrogen) and define the distributions of methane and acetylene in the lower levels. The ultraviolet spectrum of the sunlit hemisphere is dominated by emissions from atomic and molecular hydrogen, which are kmown as electroglow emissions. The energy source for these emissions is unknown, but the spectrum implies excitation by low-energy electrons (modeled with a 3-electron-volt Maxwellian energy distribution). The major energy sink for the electrons is dissociation of molecular hydrogen, producing hydrogen atoms at a rate of 10(29) per second. Approximately half the atoms have energies higher than the escape energy. The high temperature of the atmosphere, the small size of Uranus, and the number density of hydrogen atoms in the thermosphere imply an extensive thermal hydrogen corona that reduces the orbital lifetime of ring particles and biases the size distribution toward larger particles. This corona is augmented by the nonthermal hydrogen atoms associated with the electroglow. An aurora near the magnetic pole in the dark hemisphere arises from excitation of molecular hydrogen at the level where its vertical column abundance is about 10(20) per square centimeter with input power comparable to that of the sunlit electroglow (approximately 2x10(11) watts). An initial estimate of the acetylene volume mixing ratio, as judged from measurements of the far ultraviolet albedo, is about 2 x 10(-7) at a vertical column abundance of molecular hydrogen of 10(23) per square centimeter (pressure, approximately 0.3 millibar). Carbon emissions from the Uranian atmosphere were also detected.

16.
Science ; 215(4532): 548-53, 1982 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-17771276

RESUMO

Combined analysis of helium (584 angstroms) airglow and the atmospheric occultations of the star delta Scorpii imply a vertical mixing parameter in Saturn's upper atmosphere of K (eddy diffusion coefficient) approximately 8 x 10(7) square centimeters per second, an order of magnitude more vigorous than mixing in Jupiter's upper atmosphere. Atmospheric H(2) band absorption of starlight yields a preliminary temperature of 400 K in the exosphere and a temperature near the homopause of approximately 200 K. The energy source for the mid-latitude H(2) band emission still remains a puzzle. Certain auroral emissions can be fully explained in terms of electron impact on H(2), and auroral morphology suggests a link between the aurora and the Saturn kilometric radiation. Absolute optical depths have been determined for the entire C ring andparts of the A and B rings. A new eccentric ringlet has been detected in the C ring. The extreme ultraviolet reflectance of the rings is fairly uniform at 3.5 to 5 percent. Collisions may control the distribution of H in Titan's H torus, which has a total vertical extent of approximately 14 Saturn radii normal to the orbit plane.

17.
Science ; 212(4491): 206-11, 1981 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-17783831

RESUMO

The global hydrogen Lyman alpha, helium (584 angstroms), and molecular hydrogen band emissions from Saturn are qualitatively similar to those of Jupiter, but the Saturn observations emphasize that the H(2) band excitation mechanism is closely related to the solar flux. Auroras occur near 80 degrees latitude, suggesting Earth-like magnetotail activity, quite different from the dominant Io plasma torus mechanism at Jupiter. No ion emissions have been detected from the magnetosphere of Saturn, but the rings have a hydrogen atmosphere; atomic hydrogen is also present in a torus between 8 and 25 Saturn radii. Nitrogen emission excited by particles has been detected in the Titan dayglow and bright limb scans. Enhancement of the nitrogen emission is observed in the region of interaction between Titan's atmosphere and the corotating plasma in Saturn's plasmasphere. No particle-excited emission has been detected from the dark atmosphere of Titan. The absorption profile of the atmosphere determined by the solar occultation experiment, combined with constraints from the dayglow observations and temperature information, indicate that N(2) is the dominant species. A double layer structure has been detected above Titan's limb. One of the layers may be related to visible layers in the images of Titan.

18.
J Mol Evol ; 14(1-3): 57-64, 1979 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-522159

RESUMO

Calculations indicate that the maximum daily solar radiation reaching the Martian surface is about 325 cal/cm2 during southern hemisphere summer at latitude of about 40 degrees S. In the ultraviolet region of the spectrum, the radiation reaching the surface at wavelengths greater than 2800 A is within 10% of the radiation incident on the atmosphere. There is significant extinction of radiation in the spectral region near 2500 A in mid and high latitudes due to adsorption of radiation by ozone; radiation reaching the surface may be reduced to one one-thousandth of that incident on the atmosphere during winter. Virtually no radiation of wavelengths less than 1900 A reaches the surface because of absorption by the large column abundance of carbon dioxide. Daily and latitudinal distributions of radiation are presented for wavelengths of 3000, 2500 and 2000 A.


Assuntos
Meio Ambiente Extraterreno , Radiação , Luz Solar , Ozônio , Raios Ultravioleta
19.
Science ; 206(4421): 962-6, 1979 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-17733915

RESUMO

Extreme ultraviolet spectral observations of the Jovian planetary system made during the Voyager 2 encounter have extended our knowledge of many of the phenomena and physical processes discovered by the Voyager 1 ultraviolet spectrometer. In the 4 months between encounters, the radiation from Io's plasma torus has increased in intensity by a factor of about 2. This change was accompanied by a decrease in plasma temperature of about 30 percent. The high-latitude auroral zones have been positively associated with the magnetic projection of the plasma torus onto the planet. Emission in molecular hydrogen bands has been detected from the equatorial regions of Jupiter, indicating planetwide electron precipitation. Hydrogen Lyman alpha from the dark side of the planet has been measured at an intensity of about 1 kilorayleigh. An observation of the occultation of alpha Leonis by Jupiter was carried out successfully and the data are being analyzed in detail.

20.
Science ; 204(4396): 979-82, 1979 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-17800434

RESUMO

Observations of the optical extreme ultraviolet spectrum of the Jupiter planetary system during the Voyager 1 encounter have revealed previously undetected physical processes of significant proportions. Bright emission lines of S III, S IV, and O III indicating an electron temperature of 10(5) K have been identified in preliminary analyses of the Io plasma torus spectrum. Strong auroral atomic and molecular hydrogen emissions have been observed in the polar regions of Jupiter near magnetic field lines that map the torus into the atmosphere of Jupiter. The observed resonance scattering of solar hydrogen Lyman alpha by the atmosphere of Jupiter and the solar occultation experiment suggest a hot thermosphere (>/= 1000 K) wvith a large atomic hydrogen abundance. A stellar occultation by Ganymede indicates that its atmosphere is at most an exosphere.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA