Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Appl Biochem Biotechnol ; 196(1): 85-98, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37099124

RESUMO

New and creative methodologies for the fabrication of silver nanoparticles (Ag-NPs), which are exploited in a wide range of consumer items, are of significant interest. Hence, this research emphasizes the biological approach of Ag-NPs through Egyptian henna leaves (Lawsonia inermis Linn.) extracts and analysis of the prepared Ag-NPs. Plant extract components were identified by gas chromatography mass spectrometry (GC-mass). The analyses of prepared Ag-NPs were carried out through UV-visible (UV-Vis), X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), and Fourier transform infrared (FTIR) analysis. UV-Vis reveals that Ag-NPs have a maximum peak at 460 nm in visible light. Structural characterization recorded peaks that corresponded to Bragg's diffractions for silver nano-crystal, with average crystallite sizes varying from 28 to 60 nm. Antibacterial activities of Ag-NPs were examined, and it is observed that all microorganisms are very sensitive to biologically synthesized Ag-NPs.


Assuntos
Lawsonia (Planta) , Nanopartículas Metálicas , Infecções Urinárias , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Antibacterianos/química , Difração de Raios X , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Espectroscopia de Infravermelho com Transformada de Fourier , Testes de Sensibilidade Microbiana
2.
J Microbiol Biotechnol ; 34(1): 207-223, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-37940165

RESUMO

The efficacy of 40 bacterial isolates obtained from hot spring water samples to produce cellulase enzymes was investigated. As a result, the strain Bacillus subtilis F3, which was identified using traditional and molecular methods, was selected as the most potent for cellulase production. Optimization was carried out using one-factor-at-a-time (OFAT) and BOX-Behnken Design to detect the best conditions for the highest cellulase activity. This was accomplished after an incubation period of 24 h at 45°C and pH 8, with an inoculum size of 1% (v/v), 5 g/l of peptone as nitrogen source, and 7.5 g/l of CMC. Moreover, the best concentration of ammonium sulfate for cellulase enzyme precipitation was 60% followed by purification using a dialysis bag and Sephadex G-100 column chromatography to collect the purified enzyme. The purified cellulase enzyme was characterized by 5.39-fold enrichment, with a specific activity of 54.20 U/mg and a molecular weight of 439 kDa. There were 15 amino acids involved in the purified cellulase, with high concentrations of 160 and 100 mg/l for glycine and proline respectively. The highest stability and activity of the purified cellulase was attained at pH 7 and 50°C in the presence of 150 ppm of CaCl2, NaCl, and ZnO metal ions. Finally, the biopolishing activity of the cellulase enzyme, as indicated by weight loss percentages of the cotton fabric, was dependent on concentration and treatment time. Overall, the thermotolerant B. subtilis F3 strain has the potential to provide highly stable and highly active cellulase enzyme for use in biopolishing of cotton fabrics.


Assuntos
Bacillus subtilis , Celulase , Bacillus subtilis/metabolismo , Celulase/metabolismo , Têxteis , Concentração de Íons de Hidrogênio , Estabilidade Enzimática , Temperatura
3.
BMC Complement Med Ther ; 23(1): 261, 2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37481531

RESUMO

BACKGROUND: The overuse of antibiotics leads to the emergence of antibiotic-resistant microbes which causes high mortality worldwide. Therefore, the synthesis of new active compounds has multifunctional activities are the main challenge. Nanotechnology provides a solution for this issue. METHOD: The endophytic fungal strain Aspergillus terreus BR.1 was isolated from the healthy root of Allium sativum and identified using internal transcribed spacer (ITS) sequence analysis. The copper oxide nanoparticles (CuO-NPs) were synthesized by harnessing the metabolites of the endophytic fungal strain. The UV-Visble spectroscopy, Fourier-transform infrared spectroscopy (FT-IR), Transmission electron micrscopy (TEM), Energy dispersive X-ray (EDX), X-ray diffraction (XRD), Dynamic light scattering (DLS), and zeta potential (ζ) were used for the characterization of synthesized CuO-NPs. The activity against different pathogenic bacteria and Candida species were investigated by agar well-diffusion method. The biocombatibility and anticancer activity were assessed by MTT assay method. The scavenging of DPPH was used to investigate the antioxidant activity of synthesized CuO-NPs. RESULTS: Data showed the successful formation of crystalline nature and spherical shape CuO-NPs with sizes in the ranges of 15-55 nm. The EDX reveals that the as-formed sample contains ions of C, O, Cl, and Cu with weight percentages of 18.7, 23.82, 11.31, and 46.17%, respectively. The DLS and ζ-potential showed high homogeneity and high stability of synthesized CuO-NPs with a polydispersity index (PDI) of 0.362 and ζ-value of - 26.6 mV. The synthesized CuO-NPs exhibited promising antibacterial and anti-Candida activity (concentration-dependent) with minimum inhibitory concentration (MIC) values in the ranges of 25-50 µg mL-1. Moreover, the fungal mediated-CuO-NPs targeted cancer cells of MCF7 and PC3 at low IC50 concentrations of 159.2 ± 4.5 and 116.2 ± 3.6 µg mL-1, respectively as compared to normal cells (Vero and Wi38 with IC50 value of 220.6 ± 3.7 and 229.5 ± 2.1 µg mL-1, respectively). The biosynthesized CuO-NPs showed antioxidant activity as detected by the DPPH method with scavenging percentages of 80.5 ± 1.2% at a concentration of 1000 µg mL-1 and decreased to 20.4 ± 4.2% at 1.9 µg mL-1 as compared to ascorbic acid (control) with scavenging activity of 97.3 ± 0.2 and 37.5 ± 1.3% at the same concentrations, respectively. CONCLUSION: The fungal mediated-CuO-NPs exhibited promising activity and can be integrated into various biomedical and theraputic applications.


Assuntos
Antioxidantes , Candida , Antioxidantes/farmacologia , Cobre , Espectroscopia de Infravermelho com Transformada de Fourier , Fungos , Antibacterianos/farmacologia , Óxidos
4.
Sci Rep ; 13(1): 9054, 2023 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-37270596

RESUMO

Herein, four endophytic fungal strains living in healthy roots of garlic were used to produce selenium nanoparticles (Se-NPs) via green synthesis. Penicillium verhagenii was found to be the most efficient Se-NPs producer with a ruby red color that showed maximum surface plasmon resonance at 270 nm. The as-formed Se-NPs were crystalline, spherical, and well-arranged without aggregation, and ranged from 25 to 75 nm in size with a zeta potential value of -32 mV, indicating high stability. Concentration-dependent biomedical activities of the P. verhagenii-based Se-NPs were observed, including promising antimicrobial activity against different pathogens (Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, Staphylococcus aureus, Candida albicans, C. glabrata, C. tropicalis, and C. parapsilosis) with minimum inhibitory concentration (MIC) of 12.5-100 µg mL-1. The biosynthesized Se-NPs showed high antioxidant activity with DPPH-scavenging percentages of 86.8 ± 0.6% at a concentration of 1000 µg mL-1 and decreased to 19.3 ± 4.5% at 1.95 µg mL-1. Interestingly, the Se-NPs also showed anticancer activity against PC3 and MCF7 cell lines with IC50 of 225.7 ± 3.6 and 283.8 ± 7.5 µg mL-1, respectively while it is remaining biocompatible with normal WI38 and Vero cell lines. Additionally, the green synthesized Se-NPs were effective against instar larvae of a medical insect, Aedes albopictus with maximum mortality of 85.1 ± 3.1, 67.2 ± 1.2, 62.10 ± 1.4, and 51.0 ± 1.0% at a concentration of 50 µg mL-1 for I, II, III, and IV-instar larva, respectively. These data highlight the efficacy of endophytic fungal strains for cost-effective and eco-friendly Se-NPs synthesis with different applications.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Selênio , Humanos , Antioxidantes/metabolismo , Selênio/farmacologia , Selênio/química , Nanopartículas Metálicas/química , Anti-Infecciosos/química , Células MCF-7 , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA