Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Pharm ; 19(11): 4067-4079, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36226722

RESUMO

Extracellular vesicle (EV)-mediated microRNA transfer and propagation from the donor cell to the recipient cell in the tumor microenvironment have significant implications, including the development of multidrug resistance (MDR). Although miRNA-encapsulated EV have been shown to have functional effects on recipient cells, the quantitative aspects of transfer kinetics and functional effects remain poorly understood. Intracellular events such as degradation of miRNA, loading of miRNA into EVs, cellular release of EVs, and their uptake by recipient cells govern the transfer and functional effect of encapsulated miRNA. Based on these rate-limiting steps, we developed a mathematical model using ordinary differential equations (model 1). We performed coculture experiments using ID8-VEGF ovarian cancer cells to demonstrate EV-mediated propagation of tumor suppressor miRNA Let7b administered with hyaluronic acid-poly(ethyleneimine) (HA-PEI) nanoparticles. Using the experimental data and model fitting, we determined the rate constants for the kinetic events involved in the transfer from the donor cells to the recipient cells. In model 2, we performed Let7b transfection experiments in ID8-VEGF cells with HA-PEI nanoparticles to determine the concentration-effect relationship on HMGA2 mRNA levels. Lastly, in model 3, we combined model 1 and model 2 parameters to describe the kinetics and effect relationship of EV-Let7b in recipient cells to predict the minimum number of miRNA copies needed to show functional effects.


Assuntos
Vesículas Extracelulares , MicroRNAs , Neoplasias Ovarianas , Humanos , Feminino , MicroRNAs/genética , MicroRNAs/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Vesículas Extracelulares/metabolismo , Neoplasias Ovarianas/metabolismo , Modelos Teóricos , Microambiente Tumoral
3.
Nat Med ; 27(12): 2224-2233, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34887572

RESUMO

Chikungunya virus (CHIKV) infection causes acute disease characterized by fever, rash and arthralgia, which progresses to severe and chronic arthritis in up to 50% of patients. Moreover, CHIKV infection can be fatal in infants or immunocompromised individuals and has no approved therapy or prevention. This phase 1, first-in-human, randomized, placebo-controlled, proof-of-concept trial conducted from January 2019 to June 2020 evaluated the safety and pharmacology of mRNA-1944, a lipid nanoparticle-encapsulated messenger RNA encoding the heavy and light chains of a CHIKV-specific monoclonal neutralizing antibody, CHKV-24 ( NCT03829384 ). The primary outcome was to evaluate the safety and tolerability of escalating doses of mRNA-1944 administered via intravenous infusion in healthy participants aged 18-50 years. The secondary objectives included determination of the pharmacokinetics of mRNA encoding for CHKV-24 immunoglobulin heavy and light chains and ionizable amino lipid component and the pharmacodynamics of mRNA-1944 as assessed by serum concentrations of mRNA encoding for CHKV-24 immunoglobulin G (IgG), plasma concentrations of ionizable amino lipid and serum concentrations of CHKV-24 IgG. Here we report the results of a prespecified interim analysis of 38 healthy participants who received intravenous single doses of mRNA-1944 or placebo at 0.1, 0.3 and 0.6 mg kg-1, or two weekly doses at 0.3 mg kg-1. At 12, 24 and 48 h after single infusions, dose-dependent levels of CHKV-24 IgG with neutralizing activity were observed at titers predicted to be therapeutically relevant concentrations (≥1 µg ml-1) across doses that persisted for ≥16 weeks at 0.3 and 0.6 mg kg-1 (mean t1/2 approximately 69 d). A second 0.3 mg kg-1 dose 1 week after the first increased CHKV-24 IgG levels 1.8-fold. Adverse effects were mild to moderate in severity, did not worsen with a second mRNA-1944 dose and none were serious. To our knowledge, mRNA-1944 is the first mRNA-encoded monoclonal antibody showing in vivo expression and detectable ex vivo neutralizing activity in a clinical trial and may offer a treatment option for CHIKV infection. Further evaluation of the potential therapeutic use of mRNA-1944 in clinical trials for the treatment of CHIKV infection is warranted.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Vírus Chikungunya/imunologia , Lipídeos/química , RNA Mensageiro/uso terapêutico , Adulto , Anticorpos Monoclonais/genética , Anticorpos Neutralizantes/genética , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Nanopartículas/química , Placebos , Estudo de Prova de Conceito , RNA Mensageiro/efeitos adversos , RNA Mensageiro/genética , RNA Mensageiro/farmacocinética , Adulto Jovem
4.
Mol Pharm ; 18(8): 3099-3107, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34228470

RESUMO

Celiac disease is a chronic inflammatory condition characterized by activation of the immune system in response to deamidation of gluten peptides brought about by tissue transglutaminase-2 (TG2). Overexpression of interleukin-15 (IL-15) in the intestinal epithelium and the lamina propria leads to the dysregulation of the immune system, leading to epithelial damage. The goal of this study was to develop an RNA interference therapeutic strategy for celiac disease using a combination of TG2 and IL-15 gene silencing in the inflamed intestine. TG2 and IL-15 silencing siRNA sequences, along with scrambled control, were encapsulated in a nanoparticle-in-microsphere oral system (NiMOS) and administered in a poly(I:C) mouse model of celiac disease. Single TG2 and IL-15 siRNA therapy and the combination showed effective gene silencing in vivo. Additionally, it was found that IL-15 gene silencing alone and combination in the NiMOS significantly reduced other proinflammatory cytokines. The tissue histopathology data also confirmed a reduction in immune cell infiltration and restoration of the mucosal architecture and barrier function in the intestine upon treatment. Overall, the results of this study show evidence that celiac disease can be potentially treated with an oral microsphere formulation using a combination of TG2 and IL-15 RNA interference therapeutic strategies.


Assuntos
Doença Celíaca/tratamento farmacológico , Doença Celíaca/genética , Gastroenterite/tratamento farmacológico , Gastroenterite/genética , Interleucina-15/genética , Microesferas , Sistemas de Liberação de Fármacos por Nanopartículas/química , Nanopartículas/química , Proteína 2 Glutamina gama-Glutamiltransferase/genética , Interferência de RNA , Administração Oral , Animais , Doença Celíaca/induzido quimicamente , Modelos Animais de Doenças , Composição de Medicamentos/métodos , Gastroenterite/induzido quimicamente , Interleucina-15/administração & dosagem , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Poli I-C/efeitos adversos , Proteína 2 Glutamina gama-Glutamiltransferase/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Resultado do Tratamento
5.
Bioelectricity ; 2(2): 167-174, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34471844

RESUMO

Background: RNA interference (RNAi) therapy has tremendous potential in treating diseases that are characterized by overexpression of genes. However, the biggest challenge to utilize the therapy is to engineer delivery systems that can efficiently transport small interfering RNA (siRNA) to appropriate target sites. Our objective in this study was to develop and evaluate multi-compartmental systems for the oral delivery of siRNA that targets the overexpressed TG2 gene (TG2-siRNA) in the small intestine for the treatment of celiac disease (CD). Materials and Methods: Two types of multicompartmental systems were developed and evaluated: (1) a solid-in-solid multicompartmental system featuring "nanoparticle in microsphere oral system (NiMOS)" where type B gelatin nanoparticles containing TG2-siRNA (TG2-NiMOS) were encapsulated within poly(ɛ-caprolactone) (PCL) based microspheres, and (2) a solid-in-liquid multicompartmental system, "Nanoparticle-in-Emulsion (NiE)" consisting of type-B gelatin nanoparticles containing TG2-siRNA encapsulated within safflower oil containing water-in-oil-in-water (W/O/W) multiple emulsion (TG2-NiE). Results: Evaluation of the biodistribution and pharmacokinetics (PK) after a single oral dose of siRNA containing multicompartmental systems to C57BL/6 mice showed that TG2-siRNA was delivered to the small intestine (duodenum, jejunum and ileum), and colon with minimal systemic exposure via both TG2-NiE and TG2-NiMOS systems. TG2-siRNA exposure (AUC0-t) in the duodenum, jejunum, ileum and colon was 56.4-, 34.3-, 85.5- and 35.5-fold greater for the TG2-NiMOS formulation, relative to the TG2-NiE formulation. Conclusion: The results of this study suggest that TG2-NiMOS formulation was more superior than TG2-NiE formulation in facilitating intestinal delivery of siRNA via the oral route of administration and can be potentially used in the treatment of CD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA