Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Metabolites ; 14(1)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276303

RESUMO

Acute Lung Injury (ALI) is a life-threatening syndrome that has been identified as a potential complication of COVID-19. There is a critical need to shed light on the underlying mechanistic pathways and explore novel therapeutic strategies. This study aimed to examine the potential therapeutic effects of Citrus clementine essential oil (CCEO) in treating potassium dichromate (PDC)-induced ALI. The chemical profile of CCEO was created through GC-MS analysis. An in vivo study in rats was conducted to evaluate the effect of CCEO administrated via two different delivery systems (oral/inhalation) in mitigating acute lung injury (ALI) induced by intranasal instillation of PDC. Eight volatile compounds were identified, with monoterpene hydrocarbons accounting for 97.03% of the identified constituents, including 88.84% of D-limonene. CCEO at doses of 100 and 200 mg/kg bw exhibited antioxidant and anti-inflammatory properties. These significant antioxidant properties were revealed through the reduction of malondialdehyde (MDA) and the restoration of reduced glutathione (GSH). In addition, inflammation reduction was observed by decreasing levels of cytokines tumor necrosis factor-α and tumor growth factor-ß (TNF-α and TGF-ß), along with an increase in phosphatidylinositide-3-kinase (PI3K) and Akt overexpression in lung tissue homogenate, in both oral and inhalation routes, compared to the PDC-induced group. These results were supported by histopathological studies and immunohistochemical assessment of TGF-ß levels in lung tissues. These findings revealed that CCEO plays an integral role in relieving ALI induced by intranasal PDC and suggests it as a promising remedy.

2.
Front Mol Biosci ; 10: 1248885, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37936719

RESUMO

Oral cancer is one of the most common cancer types. Many factors can express certain genes that cause the proliferation of oral tissues. Overexpressed genes were detected in oral cancer patients; three were highly impacted. FAP, FN1, and MMP1 were the targeted genes that showed inhibition results in silico by ginsenoside C and Rg1. Approved drugs were retrieved from the DrugBank database. The docking scores show an excellent interaction between the ligands and the targeted macromolecules. Further molecular dynamics simulations showed the binding stability of the proposed natural products. This work recommends repurposing ginsenoside C and Rg1 as potential binders for the selected targets and endorses future experimental validation for the treatment of oral cancer.

3.
J Pharm Pharm Sci ; 26: 11808, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38022905

RESUMO

Long-term liver injuries lead to hepatic fibrosis, often progressing into cirrhosis, liver failure, portal hypertension, and hepatocellular carcinoma. There is currently no effective therapy available for liver fibrosis. Thus, continuous investigations for anti-fibrotic therapy are ongoing. The main theme of anti-fibrotic investigation during recent years is the rationale-based selection of treatment molecules according to the current understanding of the pathology of the disease. The research efforts are mainly toward repurposing current FDA-approved drugs targeting etiological molecular factors involved in developing liver fibrosis. In parallel, investigations also focus on experimental small molecules with evidence to hinder or reverse the fibrosis. Natural compounds, immunological, and genetic approaches have shown significant encouraging effects. This review summarizes the efficacy and safety of current under-investigation antifibrosis medications targeting various molecular targets, as well as the properties of antifibrosis medications, mainly in phase II and III clinical trials.


Assuntos
Reposicionamento de Medicamentos , Cirrose Hepática , Humanos , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/etiologia , Cirrose Hepática/patologia , Fígado
4.
Drug Deliv Transl Res ; 13(10): 2463-2474, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37010791

RESUMO

Natural compounds that elicit anticancer properties are of great interest for cancer therapy. However, the low solubility and bioavailability of these compounds limit their use as efficient anticancer drugs. To avoid these drawbacks, incorporation of these compounds into cubic nanoparticles (cubosomes) was carried out. Cubosomes containing bergapten which is a natural anticancer compound isolated from Ficus carica were prepared by the homogenization technique using monoolein and poloxamer. These cubosomes were characterized for size, zeta potential, entrapment efficiency, small angle X-ray diffraction, in vitro release, in vitro cytotoxicity, cellular uptake, and antitumor activity. Particle size of cubosomes was 220 ± 3.6 nm with almost neutral zeta potential - 5 ± 1.2 mV and X-ray measurements confirmed the existence of the cubic structure. Additionally, more than 90% of the natural anticancer drug was entrapped within the cubosomes. A sustained release over 30 h was obtained for these cubosomes. Finally, these cubosomes illustrated higher in vitro cytotoxicity and in vivo tumor inhibition compared with the free natural anticancer compound. Thus, cubosomes could be promising carriers for enhancement of antitumor efficiency of this natural compound.


Assuntos
Antineoplásicos , Nanopartículas , Nanopartículas/química , Solubilidade , Difração de Raios X , Poloxâmero/química , Antineoplásicos/farmacologia , Tamanho da Partícula , Portadores de Fármacos/química
5.
Pharm Dev Technol ; 28(3-4): 277-287, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36919494

RESUMO

Nowadays the application of lipid nanoparticles as carriers for the delivery of anticancer drugs gained great attention in cancer therapy. Solid lipid nanoparticles (SLNs) and cubic nanoparticles (cubosomes) are considered as promising carriers in cancer therapy. The comparison of these two lipid nanoparticles as efficient carriers for the anticancer drug docetaxel was our main goal in this study. Both nanoparticles were prepared by the hot melt homogenization technique followed by measurement of particle size, zeta potential, entrapment efficiency and in vitro release of docetaxel. An advanced technique has been applied to measure the release of docetaxel from these nanoparticles using small unilamellar vesicles (SUVs) as acceptor particles which resemble many compartments in our body. All prepared nanoparticles revealed a neutral zeta potential with particle sizes of about 200 nm. While SUVs showed a negative surface charge with a zeta potential of -55 mV, cubosomes showed higher entrapment efficiency and a slower docetaxel release compared to SLNs. Additionally, cubosomes improved in vitro cytotoxicity as well as the in vivo antitumor inhibition of docetaxel compared to SLNs and docetaxel solution. Overall, our results showed that incorporation of docetaxel into cubosomes could enhance its in vitro and in vivo performance compared to docetaxel incorporated into SLNs.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Humanos , Docetaxel , Portadores de Fármacos , Lipídeos , Tamanho da Partícula
6.
Molecules ; 27(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36500468

RESUMO

Almost one-third of all infectious diseases are caused by viruses, and these diseases account for nearly 20% of all deaths globally. It is becoming increasingly clear that highly contagious viral infections pose a significant threat to global health and economy around the world. The need for innovative, affordable, and safe antiviral therapies is a must. Zinc oxide nanoparticles are novel materials of low toxicity and low cost and are known for their antiviral activity. The genus Pelargonium was previously reported for its antiviral and antimicrobial activity. In this work, Pelargonium zonale leaf extract chemical profile was studied via high-performance liquid chromatography (HPLC) and was used for the biosynthesis of zinc oxide nanoparticles. Furthermore, the antiviral activity of the combination of P. zonale extract and the biosynthesized nanoparticles of ZnO against the human corona 229E virus was investigated. Results revealed that ZnONPs had been biosynthesized with an average particle size of about 5.5 nm and characterized with UV, FTIR, TEM, XRD, and SEM. The antiviral activity showed significant activity and differences among the tested samples in favor of the combination of P. zonale extract and ZnONPs (ZnONPs/Ex). The lowest IC50, 2.028 µg/mL, and the highest SI, 68.4 of ZnONPs/Ex, assert the highest antiviral activity of the combination against human coronavirus (229E).


Assuntos
Nanopartículas Metálicas , Nanopartículas , Pelargonium , Vírus , Óxido de Zinco , Humanos , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Antivirais/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Nanopartículas/química , Nanopartículas Metálicas/química
7.
Pharmaceuticals (Basel) ; 15(12)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36558923

RESUMO

Globally, pathogenic microbes have reached a worrisome level of antibiotic resistance. Our work aims to identify and isolate the active components from the bioactive Ficus retusa bark extract and assess the potential synergistic activity of the most major compounds' constituents with the antibiotic tetracycline against certain pathogenic bacterial strains. The phytochemical screening of an acetone extract of F. retusa bark using column chromatography led to the identification of 10 phenolic components. The synergistic interaction of catechin and chlorogenic acid as the most major compounds with tetracycline was evaluated by checkerboard assay followed by time-kill assay, against Bacillus cereus, Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumonia, and Salmonella typhi with fraction inhibitory concentration index values (FICI) of 0.38, 0.43, 0.38, 0.38, 0.38, and 0.75 for catechin and 0.38, 0.65, 0.38, 0.63, 0.38, and 0.75 for chlorogenic acid. The combination of catechin and chlorogenic acid with tetracycline significantly enhanced antibacterial action against gram-positive and gram-negative microorganisms; therefore, catechin and chlorogenic acid combinations with tetracycline could be employed as innovative and safe antibiotics to combat microbial resistance.

8.
Molecules ; 27(14)2022 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-35889432

RESUMO

Helicobacter pylori (H. pylori) is a global health threat, and the World Health Organization has included H. pylori among 12 bacterial species that require high priority future strategies for the development of new antibiotics due mainly to its high rates of resistance. Metallic nanoparticles are known for their antimicrobial properties. The FDA (Food and Drug Administration) has approved zinc oxide nanoparticles (ZnONPs) as biocompatible antimicrobials. Green synthesis of ZnONPs was performed based on Oak galls extract (OGE) and was characterized by UV, IR, DLS, TEM, and SEM measurements. In addition, LC-MS/MS was used for the identification of OGE constituents. A checkerboard assay was used to evaluate the activity of synthesized Qi-ZnONPs and OGE against H. pylori, and their synergistic effects with amoxicillin were evaluated. LC-MS/MS analyses identified 20 compounds as major gallic acid conjugates. The ZnONPs had average particle sizes of 5.5 nm (DLS) and 7.99 nm (TEM). Both OGE and Qi-ZnONPs exhibited moderate activity against H. pylori. Amoxicillin and Qi-ZnONPs combinations (1:2 and 1:4 amoxicillin:/Qi-ZnONPs) significantly decreased the MIC90 by two-fold and four-fold, respectively, and FIC values for the combinations were more significant than with OGE alone. OGE is rich in phenolics. The synergism between Qi-ZnONPs and amoxicillin can provide an alternative safe agent of low cost to combat H. Pylori infections.


Assuntos
Anti-Infecciosos , Helicobacter pylori , Nanopartículas Metálicas , Nanopartículas , Quercus , Óxido de Zinco , Amoxicilina/farmacologia , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Cromatografia Líquida , Extratos Vegetais/farmacologia , Espectrometria de Massas em Tandem , Óxido de Zinco/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA