Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Europace ; 25(12)2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-38006390

RESUMO

AIMS: The mechanisms of transition from regular rhythms to ventricular fibrillation (VF) are poorly understood. The concordant to discordant repolarization alternans pathway is extensively studied; however, despite its theoretical centrality, cannot guide ablation. We hypothesize that complex repolarization dynamics, i.e. oscillations in the repolarization phase of action potentials with periods over two of classic alternans, is a marker of electrically unstable substrate, and ablation of these areas has a stabilizing effect and may reduce the risk of VF. To prove the existence of higher-order periodicities in human hearts. METHODS AND RESULTS: We performed optical mapping of explanted human hearts obtained from recipients of heart transplantation at the time of surgery. Signals recorded from the right ventricle endocardial surface were processed to detect global and local repolarization dynamics during rapid pacing. A statistically significant global 1:4 peak was seen in three of six hearts. Local (pixel-wise) analysis revealed the spatially heterogeneous distribution of Periods 4, 6, and 8, with the regional presence of periods greater than two in all the hearts. There was no significant correlation between the underlying restitution properties and the period of each pixel. CONCLUSION: We present evidence of complex higher-order periodicities and the co-existence of such regions with stable non-chaotic areas in ex vivo human hearts. We infer that the oscillation of the calcium cycling machinery is the primary mechanism of higher-order dynamics. These higher-order regions may act as niduses of instability and may provide targets for substrate-based ablation of VF.


Assuntos
Ventrículos do Coração , Coração , Humanos , Arritmias Cardíacas , Fibrilação Ventricular/cirurgia , Potenciais de Ação/fisiologia
2.
medRxiv ; 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37662394

RESUMO

Background: Repolarization alternans, defined as period-2 oscillation in the repolarization phase of the action potentials, provides a mechanistic link between cellular dynamics and ventricular fibrillation (VF). Theoretically, higher-order periodicities (e.g., periods 4, 6, 8,...) are expected but have minimal experimental evidence. Methods: We studied explanted human hearts obtained from recipients of heart transplantation at the time of surgery. Optical mapping of the transmembrane potential was performed after staining the hearts with voltage-sensitive fluorescent dyes. Hearts were stimulated at an increasing rate until VF was induced. Signals recorded from the right ventricle endocardial surface prior to induction of VF and in the presence of 1:1 conduction were processed using the Principal Component Analysis and a combinatorial algorithm to detect and quantify higher-order dynamics. Results were correlated to the underlying electrophysiological characteristics as quantified by restitution curves and conduction velocity. Results: A prominent and statistically significant global 1:4 peak (corresponding to period-4 dynamics) was seen in three of the six studied hearts. Local (pixel-wise) analysis revealed the spatially heterogeneous distribution of periods 4, 6, and 8, with the regional presence of periods greater than two in all the hearts. There was no significant correlation between the underlying restitution properties and the period of each pixel. Discussion: We present evidence of higher-order periodicities and the co-existence of such regions with stable non-chaotic areas in ex-vivo human hearts. We infer from the independence of the period to the underlying restitution properties that the oscillation of the excitation-contraction coupling and calcium cycling mechanisms is the primary mechanism of higher-order dynamics. These higher-order regions may act as niduses of instability that can degenerate into chaotic fibrillation and may provide targets for substrate-based ablation of VF.

3.
N Engl J Med ; 388(23): 2121-2131, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37285526

RESUMO

BACKGROUND: Data showing the efficacy and safety of the transplantation of hearts obtained from donors after circulatory death as compared with hearts obtained from donors after brain death are limited. METHODS: We conducted a randomized, noninferiority trial in which adult candidates for heart transplantation were assigned in a 3:1 ratio to receive a heart after the circulatory death of the donor or a heart from a donor after brain death if that heart was available first (circulatory-death group) or to receive only a heart that had been preserved with the use of traditional cold storage after the brain death of the donor (brain-death group). The primary end point was the risk-adjusted survival at 6 months in the as-treated circulatory-death group as compared with the brain-death group. The primary safety end point was serious adverse events associated with the heart graft at 30 days after transplantation. RESULTS: A total of 180 patients underwent transplantation; 90 (assigned to the circulatory-death group) received a heart donated after circulatory death and 90 (regardless of group assignment) received a heart donated after brain death. A total of 166 transplant recipients were included in the as-treated primary analysis (80 who received a heart from a circulatory-death donor and 86 who received a heart from a brain-death donor). The risk-adjusted 6-month survival in the as-treated population was 94% (95% confidence interval [CI], 88 to 99) among recipients of a heart from a circulatory-death donor, as compared with 90% (95% CI, 84 to 97) among recipients of a heart from a brain-death donor (least-squares mean difference, -3 percentage points; 90% CI, -10 to 3; P<0.001 for noninferiority [margin, 20 percentage points]). There were no substantial between-group differences in the mean per-patient number of serious adverse events associated with the heart graft at 30 days after transplantation. CONCLUSIONS: In this trial, risk-adjusted survival at 6 months after transplantation with a donor heart that had been reanimated and assessed with the use of extracorporeal nonischemic perfusion after circulatory death was not inferior to that after standard-care transplantation with a donor heart that had been preserved with the use of cold storage after brain death. (Funded by TransMedics; ClinicalTrials.gov number, NCT03831048.).


Assuntos
Morte Encefálica , Transplante de Coração , Obtenção de Tecidos e Órgãos , Adulto , Humanos , Sobrevivência de Enxerto , Preservação de Órgãos , Doadores de Tecidos , Morte , Segurança do Paciente
4.
bioRxiv ; 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37205562

RESUMO

Background: Repolarization alternans, defined as period-2 oscillation in the repolarization phase of the action potentials, is one of the cornerstones of cardiac electrophysiology as it provides a mechanistic link between cellular dynamics and ventricular fibrillation (VF). Theoretically, higher-order periodicities (e.g., period-4, period-8,...) are expected but have very limited experimental evidence. Methods: We studied explanted human hearts, obtained from the recipients of heart transplantation at the time of surgery, using optical mapping technique with transmembrane voltage-sensitive fluorescent dyes. The hearts were stimulated at an increasing rate until VF was induced. The signals recorded from the right ventricle endocardial surface just before the induction of VF and in the presence of 1:1 conduction were processed using the Principal Component Analysis and a combinatorial algorithm to detect and quantify higher-order dynamics. Results: A prominent and statistically significant 1:4 peak (corresponding to period-4 dynamics) was seen in three of the six studied hearts. Local analysis revealed the spatiotemporal distribution of higher-order periods. Period-4 was localized to temporally stable islands. Higher-order oscillations (period-5, 6, and 8) were transient and primarily occurred in arcs parallel to the activation isochrones. Discussion: We present evidence of higher-order periodicities and the co-existence of such regions with stable non-chaotic areas in ex-vivo human hearts before VF induction. This result is consistent with the period-doubling route to chaos as a possible mechanism of VF initiation, which complements the concordant to discordant alternans mechanism. The presence of higher-order regions may act as niduses of instability that can degenerate into chaotic fibrillation.

5.
Future Cardiol ; 17(6): 971-984, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33563033

RESUMO

Left ventricular assist devices (LVADs) have changed the landscape of treatment options for patients with end stage heart failure. Due to the limited availability of donor hearts for transplantation, LVADs have become an important option for many of these patients. Much progress has been made in the device industry since then, and newer devices continue to improve patient outcomes. In this review, we will discuss some of the key transitions in LVADs over the years, the current LVADs used in practice today, implantation techniques, the impact of the new heart allocation system on LVAD use and future prospective LVADs.


Assuntos
Insuficiência Cardíaca , Transplante de Coração , Coração Auxiliar , Insuficiência Cardíaca/terapia , Humanos , Doadores de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA