Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 281: 130676, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34020185

RESUMO

Modification of biochar for efficient removal of antibiotics from water could be a valuable approach in the environmental applications. In this study, a brown seaweed (Sargassum crassifolium) was pyrolyzed at 500 °C and the obtained biochar (SWBC) was modified with zeolite through the slurry method maintaining the ratio at 1:5 (zeolite: biochar) (SWBC-Z). Batch adsorption experiments were conducted to evaluate the adsorption tendency of SWBC and SWBC-Z for the removal of ciprofloxacin (CPX) from water via pH edge, kinetics, isotherm and thermodynamic experiments. The highest adsorption was in the pH range of 6.5-8, supported by the electrostatic attractions and hydrogen bonding with zwitterionic CPX. Experimental kinetics data was well-fitted to the pseudo-second-order and Elovich models (R2 of 0.992 and 0.976, respectively), while the Langmuir and Freundlich isotherm models best described the isotherm data (R2 of 0.954 and 0.976, respectively). The maximum adsorption capacity of 93.65 mg g-1 was recorded for the SWBC-Z. The models predicted chemisorption and physisorption interactions on the heterogenous biochar surface. Well-defined peaks of silanol groups in the FTIR spectrum of SWBC-Z and its electron microscopy confirmed the incorporation of zeolite minerals. Post adsorption FTIR analysis elucidated the changes in the surface functional groups of the SWBC-Z. Thermodynamic data revealed spontaneous and exothermic reaction between CPX and both the biochars. It was concluded that modification of pristine biochar with zeolite imparted greater surface area and additional active sites, which subsequently enhanced the overall CPX adsorption by the SWBC-Z.


Assuntos
Sargassum , Alga Marinha , Poluentes Químicos da Água , Zeolitas , Adsorção , Carvão Vegetal , Ciprofloxacina , Concentração de Íons de Hidrogênio , Cinética , Termodinâmica
2.
Water Res ; 196: 117011, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33743325

RESUMO

Weathering of microplastics (MPs, < 5 mm) in terrestrial and aquatic environments affects MP transport and distribution. This paper first summarizes the sources of MPs, including refuse in landfills, biowastes, plastic films, and wastewater discharge. Once MPs enter water and soil, they undergo different weathering processes. MPs can be converted into small molecules (e.g., oligomers and monomers), and may be completely mineralized under the action of free radicals or microorganisms. The rate and extent of weathering of MPs depend on their physicochemical properties and environmental conditions of the media to which they are exposed. In general, water dissipates heat better, and has a lower temperature, than land; thus, the weathering rate of MPs in the aquatic environment is slower than in the terrestrial environment. These weathering processes increase oxygen-containing functional groups and the specific surface area of MPs, which influence the sorption and aggregation that occur between weathered MPs and their co-existing constituents. More studies are needed to investigate the various weathering processes of diverse MPs under natural field conditions in soils, sediments, and aquatic environments, to understand the impact of weathered MPs in the environment.


Assuntos
Microplásticos , Poluentes Químicos da Água , Adsorção , Plásticos , Poluentes Químicos da Água/análise , Tempo (Meteorologia)
3.
Environ Int ; 149: 106367, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33497857

RESUMO

Microplastics are well known for vector transport of hydrophobic organic contaminants, and there are growing concerns regarding their potential adverse effects on ecosystems and human health. However, recent studies focussing on hydrophilic compounds, such as pharmaceuticals and personal care products (PPCPs), have shown that the compounds ability to be adsorbed onto plastic surfaces. The extensive use of PPCPs has led to their ubiquitous presence in the environment resulting in their cooccurrence with microplastics. The partitioning between plastics and PPCPs and their fate through vector transport are determined by various physicochemical characteristics and environmental conditions of specific matrices. Although the sorption capacities of microplastics for different PPCP compounds have been investigated extensively, these findings have not yet been synthesized and analyzed critically. The specific objectives of this review were to synthesize and critically assess the various factors that affect the adsorption of hydrophilic compounds such as PPCPs on microplastic surfaces and their fate and transport in the environment. The review also focuses on environmental factors such as pH, salinity, and dissolved organics, and properties of polymers and PPCP compounds, and the relationships with sorption dynamics and mechanisms. Furthermore, the ecotoxicological effects of PPCP-sorbed microplastics on biota and human health are also discussed.


Assuntos
Cosméticos , Preparações Farmacêuticas , Poluentes Químicos da Água , Adsorção , Ecossistema , Humanos , Microplásticos , Plásticos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA