Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(9): e0291012, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37672512

RESUMO

BLEG-1 from Bacillus lehensis G1 is an evolutionary divergent B3 metallo-ß-lactamase (MBL) that exhibited both ß-lactamase and glyoxalase II (GLXII) activities. Sequence, phylogeny, biochemical and structural relatedness of BLEG-1 to B3 MBL and GLXII suggested BLEG-1 might be an intermediate in the evolutionary path of B3 MBL from GLXII. The unique active site cavity of BLEG-1 that recognizes both ß-lactam antibiotics and S-D-lactoylglutathione (SLG) had been postulated as the key factor for its dual activity. In this study, dynamic ensembles of BLEG-1 and its substrate complexes divulged conformational plasticity and binding modes of structurally distinct substrates to the enzyme, providing better insights into its structure-to-function relationship and enzymatic promiscuity. Our results highlight the flexible nature of the active site pocket of BLEG-1, which is governed by concerted loop motions involving loop7+α3+loop8 and loop12 around the catalytic core, thereby moulding the binding pocket and facilitate interactions of BLEG-1 with both ampicillin and SLG. The distribution of (i) predominantly hydrophobic amino acids in the N-terminal domain, and (ii) flexible amino acids with polar and/or charged side chains in both N- and C-termini provide additional advantages to BLEG-1 in confining the aromatic group of ampicillin, and polar groups of SLG, respectively. The importance of these residues for substrates binding was further confirmed by the reduction in MBL and GLXII activities upon alanine substitutions of Ile-10, Phe-57, Arg-94, Leu-95, and Arg-159. Based on molecular dynamics simulation, mutational, and biochemical data presented herein, the catalytic mechanisms of BLEG-1 toward the hydrolysis of ß-lactams and SLG were proposed.


Assuntos
Alanina , Antifibrinolíticos , Aminoácidos , Ampicilina
2.
MethodsX ; 9: 101740, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35707637

RESUMO

Metallo-ß-lactamases (MBLs) are class B ß-lactamases from the metallo-hydrolase-like MBL-fold superfamily which act on a broad range of ß-lactam antibiotics, thus conferring antibiotics resistance to bacterial pathogens. The attempt to structurally characterize BLEG-1, an evolutionary divergent B3 metallo-ß-lactamase (MBL) with dual activity from Bacillus lehensis G1, led to the optimization of its purification, post-purification and crystallization processes for X-ray diffraction purpose. The workflow, conditions used and dataset obtained from each stage of the processes are presented herein. The optimization workflow has enabled the obtainment of purified, active BLEG-1 in high yield for its activity assays, crystallization and structure determination via X-ray diffraction. This is the first step to gain a better insight into its dual activity and evolutionary divergence from a structural perspective. The complete research article, including BLEG-1 dual activity analysis, is published in the International Journal of Molecular Sciences (Au et al., 2021). • The method was optimized to increase the stability of BLEG-1 in purification, post-purification and crystallization processes. • Protein crystallization using the optimized conditions presented herein is able to produce and regenerate BLEG-1 protein crystals of medium-size, which is an advantage in X-ray diffraction. • The method can be used for relevant homologs and variants of BLEG-1 for structure-function and mechanistic studies of such proteins.

3.
Int J Mol Sci ; 22(17)2021 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-34502284

RESUMO

Metallo-ß-lactamases (MBLs) are class B ß-lactamases from the metallo-hydrolase-like MBL-fold superfamily which act on a broad range of ß-lactam antibiotics. A previous study on BLEG-1 (formerly called Bleg1_2437), a hypothetical protein from Bacillus lehensis G1, revealed sequence similarity and activity to B3 subclass MBLs, despite its evolutionary divergence from these enzymes. Its relatedness to glyoxalase II (GLXII) raises the possibility of its enzymatic promiscuity and unique structural features compared to other MBLs and GLXIIs. This present study highlights that BLEG-1 possessed both MBL and GLXII activities with similar catalytic efficiencies. Its crystal structure revealed highly similar active site configuration to YcbL and GloB GLXIIs from Salmonella enterica, and L1 B3 MBL from Stenotrophomonas maltophilia. However, different from GLXIIs, BLEG-1 has an insertion of an active-site loop, forming a binding cavity similar to B3 MBL at the N-terminal region. We propose that BLEG-1 could possibly have evolved from GLXII and adopted MBL activity through this insertion.


Assuntos
Bacillus/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Tioléster Hidrolases/química , beta-Lactamases/química , Ampicilina/química , Ampicilina/metabolismo , Proteínas de Bactérias/genética , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Evolução Molecular , Glutationa/análogos & derivados , Glutationa/química , Glutationa/metabolismo , Simulação de Acoplamento Molecular , Filogenia , Conformação Proteica , Stenotrophomonas maltophilia/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA