Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Life Sci Alliance ; 8(1)2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39477543

RESUMO

Duchenne muscular dystrophy (DMD) is a lethal disease caused by mutations in the DMD gene that encodes dystrophin. Dystrophin deficiency also impacts muscle stem cells (MuSCs), resulting in impaired asymmetric stem cell division and myogenic commitment. Using MuSCs from DMD patients and the DMD mouse model mdx, we found that PTPN1 phosphatase expression is up-regulated and STAT3 phosphorylation is concomitantly down-regulated in DMD MuSCs. To restore STAT3-mediated myogenic signaling, we examined the effect of K884, a novel PTPN1/2 inhibitor, on DMD MuSCs. Treatment with K884 enhanced STAT3 phosphorylation and promoted myogenic differentiation of DMD patient-derived MuSCs. In MuSCs from mdx mice, K884 treatment increased the number of asymmetric cell divisions, correlating with enhanced myogenic differentiation. Interestingly, the pro-myogenic effect of K884 is specific to human and murine DMD MuSCs and is absent from control MuSCs. Moreover, PTPN1/2 loss-of-function experiments indicate that the pro-myogenic impact of K884 is mediated mainly through PTPN1. We propose that PTPN1/2 inhibition may serve as a therapeutic strategy to restore the myogenic function of MuSCs in DMD.


Assuntos
Diferenciação Celular , Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Proteína Tirosina Fosfatase não Receptora Tipo 2 , Fator de Transcrição STAT3 , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Animais , Diferenciação Celular/efeitos dos fármacos , Humanos , Camundongos , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Fator de Transcrição STAT3/metabolismo , Células-Tronco/metabolismo , Células-Tronco/citologia , Desenvolvimento Muscular/genética , Desenvolvimento Muscular/efeitos dos fármacos , Modelos Animais de Doenças , Fosforilação , Transdução de Sinais/efeitos dos fármacos , Músculo Esquelético/metabolismo
2.
Sci Rep ; 14(1): 14718, 2024 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926456

RESUMO

We examined the role of protein tyrosine phosphatase receptor sigma (PTPRS) in the context of Alzheimer's disease and synaptic integrity. Publicly available datasets (BRAINEAC, ROSMAP, ADC1) and a cohort of asymptomatic but "at risk" individuals (PREVENT-AD) were used to explore the relationship between PTPRS and various Alzheimer's disease biomarkers. We identified that PTPRS rs10415488 variant C shows features of neuroprotection against early Tau pathology and synaptic degeneration in Alzheimer's disease. This single nucleotide polymorphism correlated with higher PTPRS transcript abundance and lower p(181)Tau and GAP-43 levels in the CSF. In the brain, PTPRS protein abundance was significantly correlated with the quantity of two markers of synaptic integrity: SNAP25 and SYT-1. We also found the presence of sexual dimorphism for PTPRS, with higher CSF concentrations in males than females. Male carriers for variant C were found to have a 10-month delay in the onset of AD. We thus conclude that PTPRS acts as a neuroprotective receptor in Alzheimer's disease. Its protective effect is most important in males, in whom it postpones the age of onset of the disease.


Assuntos
Doença de Alzheimer , Biomarcadores , Polimorfismo de Nucleotídeo Único , Sinapses , Proteínas tau , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Biomarcadores/líquido cefalorraquidiano , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Sinapses/metabolismo , Sinapses/patologia , Proteína 25 Associada a Sinaptossoma/metabolismo , Proteína 25 Associada a Sinaptossoma/genética , Proteína 25 Associada a Sinaptossoma/líquido cefalorraquidiano , Sinaptotagmina I/metabolismo , Sinaptotagmina I/genética , Proteínas tau/líquido cefalorraquidiano , Proteínas tau/metabolismo
3.
bioRxiv ; 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38766183

RESUMO

We examined the role of protein tyrosine phosphatase receptor sigma (PTPRS) in the context of Alzheimer's disease and synaptic integrity. Publicly available datasets (BRAINEAC, ROSMAP, ADC1) and a cohort of asymptomatic but "at risk" individuals (PREVENT-AD) were used to explore the relationship between PTPRS and various Alzheimer's disease biomarkers. We identified that PTPRS rs10415488 variant C shows features of neuroprotection against early tau pathology and synaptic degeneration in Alzheimer's disease. This single nucleotide polymorphism correlated with higher PTPRS transcript abundance and lower P-tau181 and GAP-43 levels in the CSF. In the brain, PTPRS protein abundance was significantly correlated with the quantity of two markers of synaptic integrity: SNAP25 and SYT-1. We also found the presence of sexual dimorphism for PTPRS, with higher CSF concentrations in males than females. Male carriers for variant C were found to have a 10-month delay in the onset of AD. We thus conclude that PTPRS acts as a neuroprotective receptor in Alzheimer's disease. Its protective effect is most important in males, in whom it postpones the age of onset of the disease.

4.
Sci Signal ; 17(817): eadg4422, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166031

RESUMO

Thousand-and-one-amino acid kinase 3 (TAOK3) is a serine and threonine kinase that belongs to the STE-20 family of kinases. Its absence reduces T cell receptor (TCR) signaling and increases the interaction of the tyrosine phosphatase SHP-1, a major negative regulator of proximal TCR signaling, with the kinase LCK, a component of the core TCR signaling complex. Here, we used mouse models and human cell lines to investigate the mechanism by which TAOK3 limits the interaction of SHP-1 with LCK. The loss of TAOK3 decreased the survival of naïve CD4+ T cells by dampening the transmission of tonic and ligand-dependent TCR signaling. In mouse T cells, Taok3 promoted the secretion of interleukin-2 (IL-2) in response to TCR activation in a manner that depended on Taok3 gene dosage and on Taok3 kinase activity. TCR desensitization in Taok3-/- T cells was caused by an increased abundance of Shp-1, and pharmacological inhibition of Shp-1 rescued the activation potential of these T cells. TAOK3 phosphorylated threonine-394 in the phosphatase domain of SHP-1, which promoted its ubiquitylation and proteasomal degradation. The loss of TAOK3 had no effect on the abundance of SHP-2, which lacks a residue corresponding to SHP-1 threonine-394. Modulation of SHP-1 abundance by TAOK3 thus serves as a rheostat for TCR signaling and determines the activation threshold of T lymphocytes.


Assuntos
Proteínas Serina-Treonina Quinases , Receptores de Antígenos de Linfócitos T , Linfócitos T , Animais , Humanos , Camundongos , Proteína Tirosina Quinase p56(lck) Linfócito-Específica , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/metabolismo , Treonina/metabolismo
5.
Proc Natl Acad Sci U S A ; 120(14): e2221083120, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36972446

RESUMO

Phosphatases of regenerating liver (PRL-1, PRL-2, PRL-3; also known as PTP4A1, PTP4A2, PTP4A3, respectively) control intracellular magnesium levels by interacting with the CNNM magnesium transport regulators. Still, the exact mechanism governing magnesium transport by this protein complex is not well understood. Herein, we have developed a genetically encoded intracellular magnesium-specific reporter and demonstrate that the CNNM family inhibits the function of the TRPM7 magnesium channel. We show that the small GTPase ARL15 increases CNNM3/TRPM7 protein complex formation to reduce TRPM7 activity. Conversely, PRL-2 overexpression counteracts ARL15 binding to CNNM3 and enhances the function of TRPM7 by preventing the interaction between CNNM3 and TRPM7. Moreover, while TRPM7-induced cell signaling is promoted by PRL-1/2, it is reduced when CNNM3 is overexpressed. Lowering cellular magnesium levels reduces the interaction of CNNM3 with TRPM7 in a PRL-dependent manner, whereby knockdown of PRL-1/2 restores the protein complex formation. Cotargeting of TRPM7 and PRL-1/2 alters mitochondrial function and sensitizes cells to metabolic stress induced by magnesium depletion. These findings reveal the dynamic regulation of TRPM7 function in response to PRL-1/2 levels, to coordinate magnesium transport and reprogram cellular metabolism.


Assuntos
Magnésio , Canais de Cátion TRPM , Magnésio/metabolismo , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Transdução de Sinais , Metabolismo Energético
6.
Sci Rep ; 12(1): 14355, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35999262

RESUMO

Communication between gut microbiota and the brain is an enigma. Alterations in the gut microbial community affects enteric metabolite levels, such as short chain fatty acids (SCFAs). SCFAs have been proposed as a possible mechanism through which the gut microbiome modulate brain health and function. This study analyzed for the first time the effects of SCFAs at levels reported in human systemic circulation on SH-SY5Y human neuronal cell energy metabolism, viability, survival, and the brain lipidome. Cell and rat brain lipidomics was done using high resolution mass spectrometry (HRMS). Neuronal cells viability, survival and energy metabolism were analyzed via flow cytometer, immunofluorescence, and SeahorseXF platform. Lipidomics analysis demonstrated that SCFAs significantly remodeled the brain lipidome in vivo and in vitro. The most notable remodulation was observed in the metabolism of phosphatidylethanolamine plasmalogens, and mitochondrial lipids carnitine and cardiolipin. Increased mitochondrial mass, fragmentation, and hyperfusion occurred concomitant with the altered mitochondrial lipid metabolism resulting in decreased neuronal cell respiration, adenosine triphosphate (ATP) production, and increased cell death. This suggests SCFAs at levels observed in human systemic circulation can adversely alter the brain lipidome and neuronal cell function potentially negatively impacting brain health outcomes.


Assuntos
Microbioma Gastrointestinal , Neuroblastoma , Animais , Apoptose , Ácidos Graxos Voláteis/metabolismo , Humanos , Metabolismo dos Lipídeos , Ratos
7.
FASEB J ; 35(7): e21708, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34169549

RESUMO

Metabolic reprogramming occurs in cancer cells and is regulated partly by the opposing actions of tyrosine kinases and tyrosine phosphatases. Several members of the protein tyrosine phosphatase (PTP) superfamily have been linked to cancer as either pro-oncogenic or tumor-suppressive enzymes. In order to investigate which PTPs can modulate the metabolic state of cancer cells, we performed an shRNA screen of PTPs in HCT116 human colorectal cancer cells. Among the 72 PTPs efficiently targeted, 24 were found to regulate mitochondrial respiration, 8 as negative and 16 as positive regulators. Of the latter, we selected TC-PTP (PTPN2) for further characterization since inhibition of this PTP resulted in major functional defects in oxidative metabolism without affecting glycolytic flux. Transmission electron microscopy revealed an increase in the number of damaged mitochondria in TC-PTP-null cells, demonstrating the potential role of this PTP in regulating mitochondrial homeostasis. Downregulation of STAT3 by siRNA-mediated silencing partially rescued the mitochondrial respiration defect observed in TC-PTP-deficient cells, supporting the role of this signaling axis in regulating mitochondrial activity. In addition, mitochondrial stress prevented an increased expression of electron transport chain-related genes in cells with TC-PTP silencing, correlating with decreased ATP production, cellular proliferation, and migration. Our shRNA-based metabolic screen revealed that PTPs can serve as either positive or negative regulators of cancer cell metabolism. Taken together, our findings uncover a new role for TC-PTP as an activator of mitochondrial metabolism, validating this PTP as a key target for cancer therapeutics.


Assuntos
Metabolismo Energético/fisiologia , Dinâmica Mitocondrial/fisiologia , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Tirosina/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Células HCT116 , Células HEK293 , Humanos , Fosforilação/fisiologia , Proteínas Tirosina Quinases/metabolismo , RNA Interferente Pequeno/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/fisiologia
8.
BMJ Open Ophthalmol ; 5(1): e000377, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32518833

RESUMO

OBJECTIVE: To evaluate 12-month outcomes in treatment-naïve patients with neovascular (wet) age-related macular degeneration (AMD) stratified by intravitreal aflibercept (IVT-AFL) regimen. METHODS AND ANALYSIS: Patients included in the 12-month interim analysis of Real life of intravitreal Aflibercept In FraNce: oBservatiOnal Study in Wet AMD (RAINBOW), a 4-year, ongoing observational study conducted in France, were stratified by IVT-AFL dosing regimen. Safety (n=593) and effectiveness (n=428) data were analysed. Regimens included a regular cohort (three initial monthly IVT-AFL injections and ≥6 injections) and irregular cohorts (<6 injections) with and without three initial monthly injections. The main outcome measure was mean gain in best-corrected visual acuity (BCVA) at 12 months. RESULTS: Mean number of IVT-AFL injections was 6.0 (all patients, n=513), 7.2 (regular cohort, n=102), 6.1 (irregular cohort with three initial monthly injections, n=266) and 5.2 (irregular cohort without three initial monthly injections, n=60). Overall mean gain in BCVA at 12 months was 5 letters; +7.1 letters (regular cohort) and +5.6 letters (irregular cohort with three initial monthly injections), both p<0.001 versus baseline, and -1.1 letters (irregular cohort without three initial monthly injections), p=0.669. Improvements in BCVA were also significantly greater in the regular cohort (p<0.001) and irregular cohort with three initial monthly injections (p=0.003) compared with the irregular cohort without three initial monthly injections. Ocular and non-ocular adverse events were reported in 14.7% and 17.4% of all patients, respectively. CONCLUSION: Treatment-naïve patients with neovascular AMD receiving three initial monthly injections followed by regular or irregular injections over 12 months experienced better visual acuity outcomes than those receiving irregular treatment without three initial monthly injections. TRIAL REGISTRATION NUMBER: NCT02279537.

9.
BMJ Open Ophthalmol ; 4(1): e000109, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31179386

RESUMO

BACKGROUND/AIMS: To monitor treatment-naïve patients with wet age-related macular degeneration (wet AMD) receiving intravitreal aflibercept (IVT-AFL) in France. METHODS: RAINBOW (Real life use of intravitreal Aflibercept In FraNce - oBservatiOnal study in Wet age-related macular degeneration) is an ongoing, observational, retrospective and prospective 4-year study to assess visual (primary), anatomical and safety outcomes following IVT-AFL treatment in wet AMD patients. We report the interim 12-month outcomes in patients who have already been enrolled. RESULTS: Safety data were analysed from 586 patients (safety analysis set); and effectiveness data were analysed from 502 patients with at least one follow-up (full-analysis set) and from 353 patients with visual acuity data at baseline and month 12. The mean (SD) best-corrected visual acuity (BCVA) was 56.7 (18.2) letters and the mean (SD) central retinal thickness (CRT) was 395.6 (140.5)µm at baseline. Most patients (76.9%) received a loading dose (first three injections within 90 days). The mean (SD) number of IVT-AFL injections over 12 months was 6.0 (2.1) and 6.6 (1.8) (patients who received a loading dose). The mean (SD) change in BCVA was 5.5 (15.0) letters and 6.8 (14.5) letters (patients who received a loading dose) at month 12 (p<0.001 vs baseline). The mean (SD) CRT reduction was -108.7 (146.8)µm and -116.4 (150.4)µm (loading dose) at month 12 (p<0.001 vs baseline). Overall, 118 (20.1%) patients experienced at least one treatment-emergent adverse event (TEAE), 1.2% experienced ocular TEAEs and 3.9% experienced serious AEs. CONCLUSION: This 12-month interim analysis showed that IVT-AFL was associated with sustained improvements in a real-world setting. The RAINBOW results are consistent with the VIEW clinical studies. TRIAL REGISTRATION NUMBER: NCT02279537 Pre-results.

10.
J Clin Invest ; 129(3): 1193-1210, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30620725

RESUMO

Genetic variants at the PTPN2 locus, which encodes the tyrosine phosphatase PTPN2, cause reduced gene expression and are linked to rheumatoid arthritis (RA) and other autoimmune diseases. PTPN2 inhibits signaling through the T cell and cytokine receptors, and loss of PTPN2 promotes T cell expansion and CD4- and CD8-driven autoimmunity. However, it remains unknown whether loss of PTPN2 in FoxP3+ regulatory T cells (Tregs) plays a role in autoimmunity. Here we aimed to model human autoimmune-predisposing PTPN2 variants, the presence of which results in a partial loss of PTPN2 expression, in mouse models of RA. We identified that reduced expression of Ptpn2 enhanced the severity of autoimmune arthritis in the T cell-dependent SKG mouse model and demonstrated that this phenotype was mediated through a Treg-intrinsic mechanism. Mechanistically, we found that through dephosphorylation of STAT3, PTPN2 inhibits IL-6-driven pathogenic loss of FoxP3 after Tregs have acquired RORγt expression, at a stage when chromatin accessibility for STAT3-targeted IL-17-associated transcription factors is maximized. We conclude that PTPN2 promotes FoxP3 stability in mouse RORγt+ Tregs and that loss of function of PTPN2 in Tregs contributes to the association between PTPN2 and autoimmunity.


Assuntos
Artrite Reumatoide/imunologia , Proteína Tirosina Fosfatase não Receptora Tipo 2/imunologia , Linfócitos T Reguladores/imunologia , Animais , Artrite Reumatoide/genética , Artrite Reumatoide/patologia , Modelos Animais de Doenças , Feminino , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/imunologia , Interleucina-17/genética , Interleucina-17/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/imunologia , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/imunologia , Linfócitos T Reguladores/patologia
11.
Cell Mol Immunol ; 15(4): 367-376, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28287113

RESUMO

T-cell protein tyrosine phosphatase (TC-PTP) has a critical role in the development of the immune system and has been identified as a negative regulator of inflammation. Single-nucleotide polymorphisms in the TC-PTP locus have been associated with increased susceptibility to inflammatory bowel diseases (IBDs) in patients. To further understand how TC-PTP is related to IBDs, we investigated the role of TC-PTP in maintaining the intestinal epithelial barrier using an in vivo genetic approach. Intestinal epithelial cell (IEC)-specific deletion of TC-PTP was achieved in a mouse model at steady state and in the context of dextran sulphate sodium (DSS)-induced colitis. Knockout (KO) of TC-PTP in IECs did not result in an altered intestinal barrier. However, upon DSS treatment, IEC-specific TC-PTP KO mice displayed a more severe colitis phenotype with a corresponding increase in the immune response and inflammatory cytokine profile. The absence of TC-PTP caused an altered turnover of IECs, which is further explained by the role of the tyrosine phosphatase in colonic stem cell (CoSC) proliferation. Our results suggest a novel role for TC-PTP in regulating the homeostasis of CoSC proliferation. This supports the protective function of TC-PTP against IBDs, independently of its previously demonstrated role in intestinal immunity.


Assuntos
Colo/patologia , Inflamação/enzimologia , Mucosa Intestinal/enzimologia , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Células-Tronco/enzimologia , Animais , Proliferação de Células , Colite/induzido quimicamente , Colite/enzimologia , Colite/imunologia , Colite/patologia , Citocinas/metabolismo , Sulfato de Dextrana , Suscetibilidade a Doenças , Enterócitos/metabolismo , Homeostase , Inflamação/imunologia , Inflamação/patologia , Mucosa Intestinal/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/metabolismo
12.
PLoS One ; 12(5): e0178489, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28558026

RESUMO

Receptor tyrosine phosphatase sigma (RPTPσ) plays an important role in the regulation of axonal outgrowth and neural regeneration. Recent studies have identified two RPTPσ ligands, chondroitin sulfate proteoglycans (CSPGs) and heparan sulfate proteoglycans (HSPG), which can modulate RPTPσ activity by affecting its dimerization status. Here, we developed a split luciferase assay to monitor RPTPσ dimerization in living cells. Using this system, we demonstrate that heparin, an analog of heparan sulfate, induced the dimerization of RPTPσ, whereas chondroitin sulfate increased RPTPσ activity by inhibiting RPTPσ dimerization. Also, we generated several novel RPTPσ IgG monoclonal antibodies, to identify one that modulates its activity by inducing/stabilizing dimerization in living cells. Lastly, we demonstrate that this antibody promotes neurite outgrowth in SH-SY5Y cells. In summary, we demonstrated that the split luciferase RPTPσ activity assay is a novel high-throughput approach for discovering novel RPTPσ modulators that can promote axonal outgrowth and neural regeneration.


Assuntos
Anticorpos/imunologia , Proteínas Tirosina Fosfatases Semelhantes a Receptores/imunologia , Animais , Axônios , Linhagem Celular , Humanos , Camundongos , Eletroforese em Gel de Poliacrilamida Nativa
13.
Cancer Res ; 76(11): 3130-5, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27020859

RESUMO

Diet affects the risk and progression of prostate cancer, but the interplay between diet and genetic alterations in this disease is not understood. Here we present genetic evidence in the mouse showing that prostate cancer progression driven by loss of the tumor suppressor Pten is mainly unresponsive to a high-fat diet (HFD), but that coordinate loss of the protein tyrosine phosphatase Ptpn1 (encoding PTP1B) enables a highly invasive disease. Prostate cancer in Pten(-/-)Ptpn1(-/-) mice was characterized by increased cell proliferation and Akt activation, interpreted to reflect a heightened sensitivity to IGF-1 stimulation upon HFD feeding. Prostate-specific overexpression of PTP1B was not sufficient to initiate prostate cancer, arguing that it acted as a diet-dependent modifier of prostate cancer development in Pten(-/-) mice. Our findings offer a preclinical rationale to investigate the anticancer effects of PTP1B inhibitors currently being studied clinically for diabetes treatment as a new modality for management of prostate cancer. Cancer Res; 76(11); 3130-5. ©2016 AACR.


Assuntos
Dieta Hiperlipídica , Fator de Crescimento Insulin-Like I/metabolismo , PTEN Fosfo-Hidrolase/fisiologia , Neoplasias da Próstata/patologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Proliferação de Células , Progressão da Doença , Humanos , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Transdução de Sinais
14.
ACS Med Chem Lett ; 6(9): 982-6, 2015 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-26396684

RESUMO

PTP1B is a master regulator in the insulin and leptin metabolic pathways. Hyper-activated PTP1B results in insulin resistance and is viewed as a key factor in the onset of type II diabetes and obesity. Moreover, inhibition of PTP1B expression in cancer cells dramatically inhibits cell growth in vitro and in vivo. Herein, we report the computationally guided optimization of a salicylic acid-based PTP1B inhibitor 6, identifying new and more potent bidentate PTP1B inhibitors, such as 20h, which exhibited a > 4-fold improvement in activity. In CHO-IR cells, 20f, 20h, and 20j suppressed PTP1B activity and restored insulin receptor phosphorylation levels. Notably, 20f, which displayed a 5-fold selectivity for PTP1B over the closely related PTPσ protein, showed no inhibition of PTP-LAR, PRL2 A/S, MKPX, or papain. Finally, 20i and 20j displayed nanomolar inhibition of PTPσ, representing interesting lead compounds for further investigation.

15.
J Biol Chem ; 290(9): 5725-38, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25586181

RESUMO

Calnexin is a type I integral endoplasmic reticulum (ER) membrane protein, molecular chaperone, and a component of the translocon. We discovered a novel interaction between the calnexin cytoplasmic domain and UBC9, a SUMOylation E2 ligase, which modified the calnexin cytoplasmic domain by the addition of SUMO. We demonstrated that calnexin interaction with the SUMOylation machinery modulates an interaction with protein tyrosine phosphatase 1B (PTP1B), an ER-associated protein tyrosine phosphatase involved in the negative regulation of insulin and leptin signaling. We showed that calnexin and PTP1B form UBC9-dependent complexes, revealing a previously unrecognized contribution of calnexin to the retention of PTP1B at the ER membrane. This work shows that the SUMOylation machinery links two ER proteins from divergent pathways to potentially affect cellular protein quality control and energy metabolism.


Assuntos
Calnexina/metabolismo , Retículo Endoplasmático/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Animais , Western Blotting , Calnexina/genética , Cães , Células HeLa , Humanos , Camundongos , Camundongos Knockout , Microscopia Confocal , Células NIH 3T3 , Ligação Proteica , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Interferência de RNA , Sumoilação , Técnicas do Sistema de Duplo-Híbrido , Enzimas de Conjugação de Ubiquitina/genética
16.
Mol Pharmacol ; 85(4): 553-63, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24473749

RESUMO

CD45 is a receptor-like member of the protein tyrosine phosphatase (PTP) family. We screened in silico for small molecules binding at a predicted allosteric pocket unique to the CD45 intracellular domain, and validated inhibitors by in vitro phosphatase assays. Compound 211 exhibited a CD45 IC50 value of 200 nM and had >100-fold selectivity over six related PTPs. The relevance of the allosteric pocket was verified through site-directed mutagenesis. Compound 211 has a noncompetitive mechanism of action, and it is extremely effective at preventing dephosphorylation of substrate Lck phosphotyrosine (pY)-505 versus preventing dephosphorylation of Lck pY-393. In cultured primary T cells, compound 211 prevents T-cell receptor-mediated activation of Lck, Zap-70, and mitogen-activated protein kinase, and interleukin-2 production. In a delayed-type hypersensitivity reaction in vivo, compound 211 abolished inflammation. This work demonstrates a novel approach to develop effective allosteric inhibitors that can be expanded to target the corresponding allosteric domains of other receptor PTPs.


Assuntos
Fatores Imunológicos/química , Inflamação/tratamento farmacológico , Antígenos Comuns de Leucócito/antagonistas & inibidores , Receptores de Antígenos de Linfócitos T/fisiologia , Regulação Alostérica , Sítio Alostérico , Animais , Células Cultivadas , Ativação Enzimática , Feminino , Hipersensibilidade Tardia/tratamento farmacológico , Hipersensibilidade Tardia/imunologia , Fatores Imunológicos/farmacologia , Imunossupressores/química , Imunossupressores/farmacologia , Inflamação/imunologia , Interleucina-2/biossíntese , Antígenos Comuns de Leucócito/genética , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Naftoquinonas/química , Naftoquinonas/farmacologia , Fosforilação , Fosfotirosina/metabolismo , Transdução de Sinais , Relação Estrutura-Atividade , Proteína-Tirosina Quinase ZAP-70/metabolismo
17.
Chembiochem ; 11(11): 1583-93, 2010 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-20572251

RESUMO

SELEX was used to create an RNA aptamer targeted to protein tyrosine phosphatase 1B (PTP1B), an enzyme implicated in type 2 diabetes, breast cancer and obesity. We found an aptamer that strongly inhibits PTP1B in vitro with a Ki of less than 600 pM. This slow-binding, high-affinity inhibitor is also highly selective, with no detectable effect on most other tested phosphatases and approximately 300:1 selectivity over the closely related TC-PTP. Through controlled synthesis of truncated variants of the aptamer, we isolated shorter forms that inhibit PTP1B. We also investigated various single-nucleotide modifications to probe their effects on the aptamer's secondary structure and inhibition properties. This family of aptamers represents an exciting option for the development of lead nucleotide-based compounds in combating several human cancers and metabolic diseases.


Assuntos
Aptâmeros de Nucleotídeos/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Aptâmeros de Nucleotídeos/síntese química , Aptâmeros de Nucleotídeos/uso terapêutico , Humanos , Mutagênese Sítio-Dirigida , Conformação de Ácido Nucleico , Relação Estrutura-Atividade , Especificidade por Substrato
18.
Arthritis Rheum ; 60(5): 1438-50, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19404930

RESUMO

OBJECTIVE: Bone tissue in osteoarthritis (OA) is composed of abundant undermineralized osteoid matrix. The aim of this study was to investigate the mechanisms responsible for this abnormal matrix, using in vitro OA subchondral osteoblasts. METHODS: Primary normal and OA osteoblasts were prepared from tibial plateaus. Phenotype was determined by alkaline phosphatase activity, and osteocalcin, osteopontin, prostaglandin E2 (PGE2), and transforming growth factor beta1 (TGFbeta1) were assessed by enzyme-linked immunosorbent assay. Expression of COL1A1 and COL1A2 was determined by real-time polymerase chain reaction. The production of type I collagen was determined by the release of its C-terminal propeptide and Western blot analysis. In vitro mineralization was evaluated by alizarin red staining. Inhibition of TGFbeta1 expression was performed using a small interfering RNA technique. RESULTS: Mineralization of OA osteoblasts was reduced compared with mineralization of normal osteoblasts, even in the presence of bone morphogenetic protein 2 (BMP-2). Alkaline phosphatase and osteocalcin levels were elevated in OA osteoblasts compared with normal osteoblasts, whereas osteopontin levels were similar. The COL1A1-to-COL1A2 messenger RNA ratio was 3-fold higher in OA osteoblasts compared with normal osteoblasts, and the production of collagen by OA osteoblasts was increased. Because TGFbeta1 inhibits BMP-2-dependent mineralization, and because TGFbeta1 levels are approximately 4-fold higher in OA osteoblasts than in normal osteoblasts, inhibiting TGFbeta1 levels in OA osteoblasts corrected the abnormal COL1A1-to-COL1A2 ratio and increased alizarin red staining. CONCLUSION: Elevated TGFbeta1 levels in OA osteoblasts are responsible, in part, for the abnormal ratio of COL1A1 to COL1A2 and for the abnormal production of mature type I collagen. This abnormal COL1A1-to-COL1A2 ratio generates a matrix that blunts mineralization in OA osteoblasts.


Assuntos
Calcificação Fisiológica/fisiologia , Colágeno Tipo I/análise , Colágeno/análise , Osteoartrite/metabolismo , Osteoblastos/metabolismo , Idoso , Fosfatase Alcalina/análise , Antraquinonas , Proteína Morfogenética Óssea 2/análise , Células Cultivadas , Cadeia alfa 1 do Colágeno Tipo I , Corantes , Dinoprostona/análise , Proteínas da Matriz Extracelular/análise , Feminino , Humanos , Masculino , Osteocalcina/análise , Osteopontina/análise , RNA Mensageiro/análise , Fator de Crescimento Transformador beta/análise
19.
J Nat Prod ; 71(12): 1977-82, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19061360

RESUMO

Novel lipidyl pseudopteranoids, lipidyl pseudopteranes A-F (1-6), have been isolated from the soft coral Pseudopterogorgia acerosa collected from the Bahamas. Structure elucidation of the six new compounds was based on 1D and 2D NMR data and mass spectrometry, and a biomimetic synthesis of 1 from pseudopterolide (7) was used to help establish its absolute configuration. These structures represent the first report of a pseudopterane diterpene with a fatty acid moiety. Lipidyl pseudopteranes A and D exhibited modest yet selective inhibitory activity against protein tyrosine phosphatase 1B, a promising drug target.


Assuntos
Antozoários/química , Diterpenos/química , Diterpenos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Ácidos Graxos/isolamento & purificação , Ácidos Graxos/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Animais , Modelos Animais de Doenças , Diterpenos/classificação , Diterpenos/isolamento & purificação , Inibidores Enzimáticos/isolamento & purificação , Ácidos Graxos/química , Biologia Marinha , Camundongos , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular
20.
Chembiochem ; 8(2): 179-86, 2007 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-17191286

RESUMO

As important regulators of cellular signal transduction, members of the protein tyrosine phosphatase (PTP) family are considered to be promising drug targets. However, to date, the most effective in vitro PTP inhibitors have tended to be highly charged, thus limiting cellular permeability. Here, we have identified an uncharged thioxothiazolidinone derivative (compound 1), as a competitive inhibitor of a subset of PTPs. Compound 1 effectively inhibited protein tyrosine phosphatase 1B (PTP1B) in two cell-based systems: it sensitized wild-type, but not PTP1B-null fibroblasts to insulin stimulation and prevented PTP1B-dependent dephosphorylation of the FLT3-ITD receptor tyrosine kinase. We have also tested a series of derivatives in vitro against PTP1B and proposed a model of the PTP1B-inhibitor interaction. These compounds should be useful in the elucidation of cellular PTP function and could represent a starting point for development of therapeutic PTP inhibitors.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Proteínas Tirosina Fosfatases/metabolismo , Compostos de Sulfidrila/química , Tiazolidinas/química , Tiazolidinas/farmacologia , Animais , Linhagem Celular , Ativação Enzimática/efeitos dos fármacos , Cinética , Camundongos , Modelos Moleculares , Estrutura Molecular , Oxigênio/química , Ligação Proteica , Estrutura Terciária de Proteína , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Proteínas Tirosina Fosfatases/química , Proteínas Tirosina Fosfatases/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA