Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
IEEE Trans Biomed Eng ; 71(1): 89-96, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37432837

RESUMO

The human subcutaneous fat layer, skin and muscle together act as a waveguide for microwave transmissions and provide a low-loss communication medium for implantable and wearable body area networks (BAN). In this work, fat-intrabody communication (Fat-IBC) as a human body-centric wireless communication link is explored. To reach a target 64 Mb/s inbody communication, wireless LAN in the 2.4 GHz band was tested using low-cost Raspberry Pi single-board computers. The link was characterized using scattering parameters, bit error rate (BER) for different modulation schemes, and IEEE 802.11n wireless communication using inbody (implanted) and onbody (on the skin) antenna combinations. The human body was emulated by phantoms of different lengths. All measurements were done in a shielded chamber to isolate the phantoms from external interference and to suppress unwanted transmission paths. The BER measurements show that, except when using dual on-body antennas with longer phantoms, the Fat-IBC link is very linear and can handle modulations as complex as 512-QAM without any significant degradation of the BER. For all antenna combinations and phantoms lengths, link speeds of 92 Mb/s were achieved using 40 MHz bandwidth provided by the IEEE 802.11n standard in the 2.4 GHz band. This speed is most likely limited by the used radio circuits, not the Fat-IBC link. The results show that Fat-IBC, using low-cost off-the-shelf hardware and established IEEE 802.11 wireless communication, can achieve high-speed data communication within the body. The obtained data rate is among the fastest measured with intrabody communication.


Assuntos
Próteses e Implantes , Pele , Humanos , Imagens de Fantasmas , Músculos , Tecnologia sem Fio
2.
Bioengineering (Basel) ; 10(7)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37508881

RESUMO

Bone defects resulting from trauma, disease, or aging present significant challenges in the clinic. Although biomaterial scaffolds for bone-tissue engineering have shown promising results, challenges remain, including the need for adequate mechanical strength and suitable bioactive agents within scaffolds to promote bone formation. Oxygen is a critical factor for successful bone formation, and low oxygen tension inhibits it. In this study, we developed gelatin methacryloyl (GelMA) hydrogel-impregnated electrospun polycaprolactone (PCL) scaffolds that can release oxygen over 3 weeks. We investigated the potential of composite scaffolds for cell survival in bone-tissue engineering. Our results showed that the addition of an increased amount of CaO2 nanoparticles to the PCL scaffolds significantly increased oxygen generation, which was modulated by GelMA impregnation. Moreover, the resulting scaffolds showed improved cytocompatibility, pre-osteoblast adhesion, and proliferation under hypoxic conditions. This finding is particularly relevant since hypoxia is a prevalent feature in various bone diseases. In addition to providing oxygen, CaO2 nanoparticles also act as reinforcing agents improving the mechanical property of the scaffolds, while the incorporation of GelMA enhances cell adhesion and proliferation properties. Overall, our newly developed self-oxygenating composite biomaterials are promising scaffolds for bone-tissue engineering applications.

3.
Sensors (Basel) ; 23(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37430734

RESUMO

We are developing a transmission-based probe for point-of-care assessment of vertebrae strength needed for fabricating the instrumentation used in supporting the spinal column during spinal fusion surgery. The device is based on a transmission probe whereby thin coaxial probes are inserted into the small canals through the pedicles and into the vertebrae, and a broad band signal is transmitted from one probe to the other across the bone tissue. Simultaneously, a machine vision scheme has been developed to measure the separation distance between the probe tips while they are inserted into the vertebrae. The latter technique includes a small camera mounted to the handle of one probe and associated fiducials printed on the other. Machine vision techniques make it possible to track the location of the fiducial-based probe tip and compare it to the fixed coordinate location of the camera-based probe tip. The combination of the two methods allows for straightforward calculation of tissue characteristics by exploiting the antenna far field approximation. Validation tests of the two concepts are presented as a precursor to clinical prototype development.


Assuntos
Osso e Ossos , Coluna Vertebral , Sistemas Automatizados de Assistência Junto ao Leito
4.
Biomater Sci ; 11(16): 5560-5575, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37401619

RESUMO

Regeneration of large bone defects is a significant clinical challenge with variable success, but tissue engineering strategies are promising for rapid and effective bone regeneration. Maintaining an adequate oxygen level within implanted scaffolds is a major obstacle in bone tissue engineering. We developed a new oxygen-generating scaffold by electrospinning polycaprolactone with calcium peroxide (CaO2) nanocuboids (CPNCs) and characterized the physical, chemical, and biological properties of the resulting composites. Our scaffolds are highly porous and composed of submicron fibers that include CPNC as confirmed with XRD and FTIR analyses. Scaffolds containing CPNC provided controlled oxygen release for 14-days and supported cell proliferation while protecting preosteoblasts from hypoxia-induced cell death. Oxygen-generating scaffolds also facilitated bone mimetic defect contraction in vitro. The results suggest that our approach can be used to develop tissue-engineered products which target bone defects.


Assuntos
Osteogênese , Alicerces Teciduais , Humanos , Alicerces Teciduais/química , Sobrevivência Celular , Engenharia Tecidual/métodos , Regeneração Óssea , Oxigênio , Hipóxia , Diferenciação Celular , Proliferação de Células
5.
Chem Eng J ; 455(Pt 2)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36644784

RESUMO

The lack of oxygen supply in engineered constructs has been an ongoing challenge for tissue engineering and regenerative medicine. Upon implantation of an engineered tissue, spontaneous blood vessel formation does not happen rapidly, therefore, there is typically a limited availability of oxygen in engineered biomaterials. Providing oxygen in large tissue-engineered constructs is a major challenge that hinders the development of clinically relevant engineered tissues. Similarly, maintaining adequate oxygen levels in cell-laden tissue engineered products during transportation and storage is another hurdle. There is an unmet demand for functional scaffolds that could actively produce and deliver oxygen, attainable by incorporating oxygen-generating materials. Recent approaches include encapsulation of oxygen-generating agents such as solid peroxides, liquid peroxides, and fluorinated substances in the scaffolds. Recent approaches to mitigate the adverse effects, as well as achieving a sustained and controlled release of oxygen, are discussed. Importance of oxygen-generating materials in various tissue engineering approaches such as ex vivo tissue engineering, in situ tissue engineering, and bioprinting are highlighted in detail. In addition, the existing challenges, possible solutions, and future strategies that aim to design clinically relevant multifunctional oxygen-generating biomaterials are provided in this review paper.

6.
Biomater Sci ; 11(5): 1567-1588, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36688522

RESUMO

The limited availability of transplantable organs hinders the success of patient treatment through organ transplantation. In addition, there are challenges with immune rejection and the risk of disease transmission when receiving organs from other individuals. Tissue engineering aims to overcome these challenges by generating functional three-dimensional (3D) tissue constructs. When developing tissues or organs of a particular shape, structure, and size as determined by the specific needs of the therapeutic intervention, a tissue specific oxygen supply to all parts of the tissue construct is an utmost requirement. Moreover, the lack of a functional vasculature in engineered tissues decreases cell survival upon implantation in the body. Oxygen-generating materials can alleviate this challenge in engineered tissue constructs by providing oxygen in a sustained and controlled manner. Oxygen-generating materials can be incorporated into 3D scaffolds allowing the cells to receive and utilize oxygen efficiently. In this review, we present an overview of the use of oxygen-generating materials in various tissue engineering applications in an organ specific manner as well as their potential use in the clinic.


Assuntos
Oxigênio , Alicerces Teciduais , Humanos , Alicerces Teciduais/química , Oxigênio/química , Engenharia Tecidual/métodos , Sobrevivência Celular
7.
Colloids Surf B Biointerfaces ; 221: 112958, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36327774

RESUMO

The development of highly porous cell supportive polymeric scaffolds with sufficient mechanical strength has always been a challenging task in tissue engineering. The widely used nanofiber fabrication methods like electrospinning are time consuming and the obtained nanofibrous scaffolds are generally consist of compactly packed fibers, which affect proper cell penetration. On the other hand, air-jet spinning is an upcoming, less explored alternative approach for generating loosely arranged nanofibrous scaffolds within short time. However, air-jet spun scaffolds show inferior mechanical properties due to loosely organized fibers. Herein, we report the fabrication and detailed characterization of polycaprolactone (PCL) tissue engineering scaffolds loaded with diamond nanosheets (DNS) by air-jet spinning. Our results showed that the inclusion of DNS could improve the mechanical strength of the scaffolds. In vitro biocompatibility, and in vivo implantation studies demonstrated that PCL-DNS scaffolds are highly biocompatible and are suitable for tissue engineering applications. Our studies showed that mammalian cells can proliferate well in the presence of PCL-DNS scaffolds and the nanocomposite scaffolds implanted in rats did not show any considerable adverse effects. Overall, the findings show that the developed novel air-jet spun PCL-DNS nanocomposite scaffolds can be used as cell supportive scaffolds for various tissue engineering applications.


Assuntos
Nanocompostos , Nanofibras , Ratos , Animais , Engenharia Tecidual/métodos , Diamante , Alicerces Teciduais , Poliésteres , Mamíferos
8.
Front Med Technol ; 4: 924433, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36082048

RESUMO

In this paper, a conformal absorber metasurface has been designed and used for reducing the specific absorption rate (SAR) of an implantable antenna. SAR reduction of implantable antennas is one of the significant design aspects to be considered for their use in modern-day healthcare applications. The introduction of the absorber metasurface restricts the back radiation of the antenna to control the SAR value. This technique decreases the maximum SAR value by 24% and also reduces the average SAR distribution significantly without affecting the desired antenna gain. A reduction in SAR value indicates the decrease in radiation absorption by human tissue, and thus, decreases the possibility of health hazards due to EM radiation. Later, this antenna-absorber system is designed as a capsule module for increased mobility and less-invasiveness. The redundancy of invasive surgery increases acceptance of the capsule module designs of implantable antennas and devices for various biomedical usages. In vitro testing of the fabricated prototype has been carried out inside a multi-layer porcine slab to verify the effectiveness of this unique SAR reduction technique.

9.
Front Med Technol ; 4: 859498, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35479303

RESUMO

The European "Senseburn" project aims to develop a smart, portable, non-invasive microwave early effective diagnostic tool to assess the depth(d) and degree of burn. The objective of the work is to design and develop a convenient non-invasive microwave sensor for the analysis of the burn degree on burnt human skin. The flexible and biocompatible microwave sensor is developed using a magnetically coupled loop probe with a spiral resonator (SR). The sensor is realized with precise knowledge of the lumped element characteristics (resistor (R), an inductor (L), and a capacitor (C) RLC parameters). The estimated electrical equivalent circuit technique relies on a rigorous method enabling a comprehensive characterization of the sensor (loop probe and SR). The microwave resonator sensor with high quality factor (Q) is simulated using a CST studio suite, AWR microwave office, and fabricated on the RO 3003 substrate with a standard thickness of 0.13 mm. The sensor is prepared based on the change in dielectric property variation in the burnt skin. The sensor can detect a range of permittivity variations (ε r 3-38). The sensor is showing a good response in changing resonance frequency between 1.5 and 1.71 GHz for (ε r 3 to 38). The sensor is encapsulated with PDMS for the biocompatible property. The dimension of the sensor element is length (L) = 39 mm, width (W) = 34 mm, and thickness (T) = 1.4 mm. The software algorithm is prepared to automate the process of burn analysis. The proposed electromagnetic (EM) resonator based sensor provides a non-invasive technique to assess burn degree by monitoring the changes in resonance frequency. Most of the results are based on numerical simulation. We propose the unique circuit set up and the sensor device based on the information generated from the simulation in this article. The clinical validation of the sensor will be in our future work, where we will understand closely the practical functioning of the sensor based on burn degrees. The senseburn system is designed to support doctors to gather vital info of the injuries wirelessly and hence provide efficient treatment for burn victims, thus saving lives.

10.
Biomed Pharmacother ; 149: 112707, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35303565

RESUMO

Impaired diabetic wounds are serious pathophysiological complications associated with persistent microbial infections including failure in the closure of wounds, and the cause of a high frequency of lower limb amputations. The healing of diabetic wounds is attenuated due to the lack of secretion of growth factors, prolonged inflammation, and/or inhibition of angiogenic activity. Diabetic wound healing can be enhanced by supplying nitric oxide (NO) endogenously or exogenously. NO produced inside the cells by endothelial nitric oxide synthase (eNOS) naturally aids wound healing through its beneficial vasculogenic effects. However, during hyperglycemia, the activity of eNOS is affected, and thus there becomes an utmost need for the topical supply of NO from exogenous sources. Thus, NO-donors that can release NO are loaded into wound healing patches or wound coverage matrices to treat diabetic wounds. The burst release of NO from its donors is prevented by encapsulating them in polymeric hydrogels or nanoparticles for supplying NO for an extended duration of time to the diabetic wounds. In this article, we review the etiology of diabetic wounds, wound healing strategies, and the role of NO in the wound healing process. We further discuss the challenges faced in translating NO-donors as a clinically viable nanomedicine strategy for the treatment of diabetic wounds with a focus on the use of biomaterials for the encapsulation and in vivo controlled delivery of NO-donors.


Assuntos
Diabetes Mellitus , Óxido Nítrico , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/uso terapêutico , Diabetes Mellitus/tratamento farmacológico , Humanos , Óxido Nítrico/farmacologia , Doadores de Óxido Nítrico/farmacologia , Cicatrização
11.
Sensors (Basel) ; 22(3)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35161494

RESUMO

We developed a handheld, side-by-side transmission-based probe for interrogating tissue to diagnose sarcopenia-a condition largely characterized by muscle loss and replacement by fat. While commercial microwave reflection-based probes exist, they can only be used in a lab for a variety of applications. The penetration depth of these probes is only in the order of 0.3 mm, which does not even traverse the skin layer, and minor motion of the coaxial feedlines can completely dismantle the calibration. Our device builds primarily on the transmission-based concept that allows for substantially greater signal penetration depth operating over a very broad bandwidth. Additional features were integrated to further improve the penetration, optimize the geometry for a more focused planar excitation, and juxtapose the coaxial apertures for more controlled interrogation. The larger coaxial apertures further increased the penetration depth while retaining the broadband performance. Three-dimensional printing technology made it possible for the apertures to be compressed into ellipses for interrogation in a near-planar geometry. Finally, fixed side-by-side positioning provided repeatable and reliable performance. The probes were also not susceptible to multipath signal corruption due to the close proximity of the transmitting and receiving apertures. The new concept worked from 100 MHz to over 8 GHz and could sense property changes as deep as 2-3 cm. While the signal changes due to deeper feature aberrations were more subtle than for signals emanating from the skin and subcutaneous fat layers, the large property contrast between muscle and fat is a sarcopenic indication that helps to distinguish even the deepest objects. This device has the potential to provide needed specificity information about the relevant underlying tissue.


Assuntos
Sarcopenia , Calibragem , Humanos , Matemática , Sarcopenia/diagnóstico , Pele
12.
Biochim Biophys Acta Rev Cancer ; 1877(1): 188663, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34861353

RESUMO

Spatial mapping of heterogeneity in gene expression in cancer tissues can improve our understanding of cancers and help in the rapid detection of cancers with high accuracy and reliability. Significant advancements have been made in recent years in OMICS technologies, which possess the strong potential to be applied in the spatial mapping of biopsy tissue samples and their molecular profiling to a single-cell level. The clinical application of OMICS technologies in spatial profiling of cancer tissues is also advancing. The current review presents recent advancements and prospects of applying OMICS technologies to the spatial mapping of various analytes in cancer tissues. We benchmark the current state of the art in the field to advance existing OMICS technologies for high throughput spatial profiling. The factors taken into consideration include spatial resolution, types of biomolecules, number of different biomolecules that can be detected from the same assay, labeled versus label-free approaches, and approximate time required for each assay. Further advancements are still needed for the widespread application of OMICs technologies in performing fast and high throughput spatial mapping of cancer tissues as well as their effective use in research and clinical applications.


Assuntos
Neoplasias , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , Reprodutibilidade dos Testes
13.
Chem Biol Interact ; 351: 109738, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34740598

RESUMO

The rapid spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) that causes coronavirus disease 2019 (COVID-19), has had a dramatic negative impact on public health and economies worldwide. Recent studies on COVID-19 complications and mortality rates suggest that there is a higher prevalence in cardiovascular diseases (CVD) patients. Past investigations on the associations between pre-existing CVDs and susceptibility to coronavirus infections including SARS-CoV and the Middle East Respiratory Syndrome coronavirus (MERS-CoV), have demonstrated similar results. However, the underlying mechanisms are poorly understood. This has impeded adequate risk stratification and treatment strategies for CVD patients with SARS-CoV-2 infections. Generally, dysregulation of the expression of angiotensin-converting enzyme (ACE) and the counter regulator, angiotensin-converting enzyme 2 (ACE2) is a hallmark of cardiovascular risk and CVD. ACE2 is the main host receptor for SARS-CoV-2. Although further studies are required, dysfunction of ACE2 after virus binding and dysregulation of the renin-angiotensin-aldosterone system (RAAS) signaling may worsen the outcomes of people affected by COVID-19 and with preexisting CVD. Here, we review the current knowledge and outline the gaps related to the relationship between CVD and COVID-19 with a focus on the RAAS. Improved understanding of the mechanisms regulating viral entry and the role of RAAS may direct future research with the potential to improve the prevention and management of COVID-19.


Assuntos
COVID-19/fisiopatologia , Doenças Cardiovasculares/fisiopatologia , Sistema Renina-Angiotensina/fisiologia , Antagonistas de Receptores de Angiotensina/uso terapêutico , Enzima de Conversão de Angiotensina 2/metabolismo , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , COVID-19/complicações , Doenças Cardiovasculares/complicações , Humanos , Receptores de Coronavírus/metabolismo , Fatores de Risco , SARS-CoV-2/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
14.
Waste Manag ; 135: 389-396, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34610538

RESUMO

In this study, a novel method for producing direct reduced iron (DRI) powders based on microwave-assisted self-reduction of core-shell composite pellets composed of blast furnace (BF) dust and hazardous electric arc furnace (EAF) dust followed by magnetic separation was reported. The proper core-shell structure of the composite pellets was designed according to the rule of impedance matching and properties of BF dust and EAF dust by adjusting the thickness of shell (i.e., thickness of impedance matching layer) via controlling the C/O molar ratio of the raw materials from 0.55 to 0.70. The results showed that the EAF dust with high content of CaO was beneficial to the mechanical strength of green, dried, and metallized pellets (collected after reduction), while the BF dust with high content of carbon enabled sufficient microwave-assisted reduction of the pellets, facilitating subsequent magnetic separation and also the removal of zinc from EAF dust. By reduction of the core-shell BF dust-EAF dust composite pellets with the C/O molar ratio of 0.65 at 1050 °C for 15 min, the resulting metallized pellets showed superior reduction and magnetic separation indexes with higher removal percentages of zinc and lead, in comparison with conventional metallized pellets. The DRI powders obtained after magnetic separation had total iron content of 91.2 wt%, iron metallization degree of 95.8%, yield of 68.1%, and iron recovery of 88.0%. This study provided a good example for efficient and environmentally friendly comprehensive utilization of typical and hazardous wastes in the iron and steel industry.


Assuntos
Poeira , Ferro , Eletricidade , Aço , Zinco
15.
Sensors (Basel) ; 21(16)2021 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-34450927

RESUMO

Microwave-based sensing for tissue analysis is recently gaining interest due to advantages such as non-ionizing radiation and non-invasiveness. We have developed a set of transmission sensors for microwave-based real-time sensing to quantify muscle mass and quality. In connection, we verified the sensors by 3D simulations, tested them in a laboratory on a homogeneous three-layer tissue model, and collected pilot clinical data in 20 patients and 25 healthy volunteers. This report focuses on initial sensor designs for the Muscle Analyzer System (MAS), their simulation, laboratory trials and clinical trials followed by developing three new sensors and their performance comparison. In the clinical studies, correlation studies were done to compare MAS performance with other clinical standards, specifically the skeletal muscle index, for muscle mass quantification. The results showed limited signal penetration depth for the Split Ring Resonator (SRR) sensor. New sensors were designed incorporating Substrate Integrated Waveguides (SIW) and a bandstop filter to overcome this problem. The sensors were validated through 3D simulations in which they showed increased penetration depth through tissue when compared to the SRR. The second-generation sensors offer higher penetration depth which will improve clinical data collection and validation. The bandstop filter is fabricated and studied in a group of volunteers, showing more reliable data that warrants further continuation of this development.


Assuntos
Micro-Ondas , Músculos , Simulação por Computador , Humanos
16.
Adv Colloid Interface Sci ; 294: 102457, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34144344

RESUMO

The application of nanostructured materials in medicine is a rapidly evolving area of research that includes both the diagnosis and treatment of various diseases. Metals, metal oxides and carbon-based nanomaterials have shown much promise in medical technological advancements due to their tunable physical, chemical and biological properties. The nanoscale properties, especially the size, shape, surface chemistry and stability makes them highly desirable for diagnosing and treating various diseases, including cancers. Major applications of nanomaterials in cancer diagnosis include in vivo bioimaging and molecular marker detection, mainly as image contrast agents using modalities such as radio, magnetic resonance, and ultrasound imaging. When a suitable targeting ligand is attached on the nanomaterial surface, it can help pinpoint the disease site during imaging. The application of nanostructured materials in cancer diagnosis can help in the early detection, treatment and patient follow-up . This review aims to gather and present the information regarding the application of nanotechnology in cancer diagnosis. We also discuss the challenges and prospects regarding the application of nanomaterials as cancer diagnostic tools.


Assuntos
Nanoestruturas , Neoplasias , Diagnóstico por Imagem , Humanos , Metais , Nanotecnologia , Neoplasias/diagnóstico por imagem , Óxidos
17.
Pacing Clin Electrophysiol ; 44(8): 1355-1364, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34109638

RESUMO

BACKGROUND: The diagnosis of ARVC remains complex requiring both imaging and electrocardiographic (ECG) techniques. The purpose was therefore to investigate whether QRS dispersion assessed by body surface mapping (BSM) could be used to detect early signs of ARVC, particularly in gene carriers. METHODS: ARVC patients, gene carriers without a history of arrhythmias or structural cardiac changes and healthy controls underwent 12-lead resting ECG, signal-averaged ECG, echocardiographic examination, 24-hours Holter monitoring, and BSM with electrocardiographic imaging. All 252-leads BSM recordings and 12-leads ECG recordings were manually analyzed for QRS durations and QRS dispersion. RESULTS: Eight controls, 12 ARVC patients with definite ARVC and 20 healthy gene carriers were included. The ECG-QRS dispersion was significantly greater in ARVC patients (42 vs. 25 ms, p < .05), but failed to fully differentiate them from controls. The BSM-derived QRS dispersion was also significantly greater in ARVC patients versus controls (65 vs. 29 ms, p < .05) and distinguished 11/12 cases from controls using the cut-off 40msec. The BSM derived QRS dispersion was abnormal (> 40 ms) in 4/20 healthy gene carriers without signs of ARVC, which may indicate early depolarization changes. CONCLUSIONS: QRS dispersion, when assessed by BSM versus 12-lead ECG, seem to better distinguish ARVC patients from controls, and could potentially be used to detect early ARVC in gene carriers. Further studies are required to confirm the value of BSM-QRS dispersion in this respect.


Assuntos
Displasia Arritmogênica Ventricular Direita/diagnóstico , Mapeamento Potencial de Superfície Corporal , Heterozigoto , Adulto , Displasia Arritmogênica Ventricular Direita/genética , Estudos Transversais , Ecocardiografia , Eletrocardiografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
18.
Sensors (Basel) ; 21(10)2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-34063416

RESUMO

In this article, the design of an efficient wireless power transfer (WPT) system using antenna-based topology for the applications in wearable devices is presented. To implement the wearable WPT system, a simple circular patch antenna is initially designed on a flexible felt substrate by placing over a three-layer human tissue model to utilize as a receiving element. Meanwhile, a high gain circular patch antenna is also designed in the air environment to use as a transmitter for designing the wearable WPT link. The proposed WPT system is built to operate at the industrial, scientific and medical (ISM) band of 2.40-2.48 GHz. In addition, to improve the power transfer efficiency (PTE) of the system, a metamaterial (MTM) slab built with an array combination of 3 × 3 unit cells has been employed. Further, the performance analysis of the MTM integrated system is performed on the different portions of the human body like hand, head and torso model to present the versatile applicability of the system. Moreover, analysis of the specific absorption rate (SAR) has been performed in different wearable scenarios to show the effect on the human body under the standard recommended limits. Regarding the practical application issues, the performance stability analysis of the proposed system due to the misalignment and flexibility of the Rx antenna is executed. Finally, the prototypes are fabricated and experimental validation is performed on several realistic wearable platforms like three-layer pork tissue slab, human hand, head and body. The simulated and measured result confirms that by using the MTM slab, a significant amount of the PTE improvement is obtained from the proposed system.


Assuntos
Dispositivos Eletrônicos Vestíveis , Tecnologia sem Fio , Cabeça , Humanos
19.
Biomed Pharmacother ; 140: 111747, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34044276

RESUMO

Management of non-healing and slow to heal diabetic wounds is a major concern in healthcare across the world. Numerous techniques have been investigated to solve the issue of delayed wound healing, though, mostly unable to promote complete healing of diabetic wounds due to the lack of proper cell proliferation, poor cell-cell communication, and higher chances of wound infections. These challenges can be minimized by using hydrogel based wound healing patches loaded with bioactive agents. Gelatin methacrylate (GelMA) has been proven to be a highly cell friendly, cell adhesive, and inexpensive biopolymer for various tissue engineering and wound healing applications. In this study, S-Nitroso-N-acetylpenicillamine (SNAP), a nitric oxide (NO) donor, was incorporated in a highly porous GelMA hydrogel patch to improve cell proliferation, facilitate rapid cell migration, and enhance diabetic wound healing. We adopted a visible light crosslinking method to fabricate this highly porous biodegradable but relatively stable patch. Developed patches were characterized for morphology, NO release, cell proliferation and migration, and diabetic wound healing in a rat model. The obtained results indicate that SNAP loaded visible light crosslinked GelMA hydrogel patches can be highly effective in promoting diabetic wound healing.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Gelatina/administração & dosagem , Hidrogéis/administração & dosagem , Metacrilatos/administração & dosagem , Doadores de Óxido Nítrico/administração & dosagem , S-Nitroso-N-Acetilpenicilamina/administração & dosagem , Cicatrização/efeitos dos fármacos , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Gelatina/química , Hidrogéis/química , Luz , Metacrilatos/química , Óxido Nítrico/química , Doadores de Óxido Nítrico/química , Ratos Sprague-Dawley , S-Nitroso-N-Acetilpenicilamina/química
20.
Transl Oncol ; 14(7): 101087, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33865030

RESUMO

Metastasis is the major reason for most brain tumors with up to a 50% chance of occurrence in patients with other types of malignancies. Brain metastasis occurs if cancer cells succeed to cross the 'blood-brain barrier' (BBB). Moreover, changes in the structure and function of BBB can lead to the onset and progression of diseases including neurological disorders and brain-metastases. Generating BBB models with structural and functional features of intact BBB is highly important to better understand the molecular mechanism of such ailments and finding novel therapeutic agents targeting them. Hence, researchers are developing novel in vitro BBB platforms that can recapitulate the structural and functional characteristics of BBB. Brain endothelial cells-based in vitro BBB models have thus been developed to investigate the mechanism of brain metastasis through BBB and facilitate the testing of brain targeted anticancer drugs. Bioengineered constructs integrated with microfluidic platforms are vital tools for recapitulating the features of BBB in vitro closely as possible. In this review, we outline the fundamentals of BBB biology, recent developments in the microfluidic BBB platforms, and provide a concise discussion of diverse types of bioengineered BBB models with an emphasis on the application of them in brain metastasis and cancer research in general. We also provide insights into the challenges and prospects of the current bioengineered microfluidic platforms in cancer research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA