RESUMO
We describe a two-step process for the synthesis of substituted bicyclo[1.1.0]butanes. A photo-Hunsdiecker reaction generates iodo-bicyclo[1.1.1]pentanes under metal-free conditions at room temperature. These intermediates react with nitrogen and sulfur nucleophiles to afford substituted bicyclo[1.1.0]butane products.
RESUMO
An open-air method for the transition metal-free direct amination of nitro(hetero)arenes by anilines is disclosed. In this methodology, an aromatic C-H bond is substituted via oxidative nucleophilic aromatic substitution of hydrogen (ONSH). Density functional theory calculations and mechanistic studies support a dianion pathway with oxidation by molecular oxygen as the rate-limiting step.
RESUMO
Hexa-aqua-nickel(II) bis-(3-carb-oxy-4-hy-droxy-benzene-sulfonate) dihydrate, [Ni(H2O)6][C6H3(CO2H)(OH)SO3]2·2H2O, (I), crystallizes in the triclinic space group P with the nickel(II) aqua complexes on centers of inversion. The carboxyl-ate group is protonated and neither it nor the sulfonate group is involved in direct coordination to the metal ions. The structure consists of alternating layers of inorganic cations and organic anions linked by O-Hâ¯O hydrogen bonds that also include non-coordinated water mol-ecules of crystallization. The first-row divalent transition-metal salts of this anion are reported as both dihydrates and tetra-hydrates, with two distinct structures for the dihydrates that are both layered but differ in the hydrogen-bonding pattern. Compound (I) represents the second known example of one of these structures. Hexa-aqua-cobalt(II) bis-(3-carb-oxy-benzene-sulfonate) dihydrate, [Co(H2O)6][C6H4(CO2H)SO3]2·2H2O, (II), also crystallizes in triclinic P with the cobalt(II) aqua complexes on centers of inversion. The structure is also built of alternating layers of complex cations and organic anions without direct coordination to the metal by the protonated carboxyl-ate or unprotonated sulfonate groups. A robust O-Hâ¯O hydrogen-bonding network involving primarily the coordin-ated and non-coordinated water mol-ecules and sulfonate groups directs the packing. This is the first reported example of a divalent transition-metal salt of the 3-carb-oxy-benzene-sulfonate anion.
RESUMO
Formyl peptide receptor 2 (FPR2) agonists have shown efficacy in inflammatory-driven animal disease models and have the potential to treat a range of diseases. Many reported synthetic agonists contain a phenylurea, which appears to be necessary for activity in the reported chemotypes. We set out to find isosteres for the phenylurea and focused our efforts on heteroaryl rings. The wide range of potencies with heterocyclic isosteres demonstrates how electronic effects of the heteroatom placement impact molecular recognition. Herein, we report our discovery of benzimidazole and aminophenyloxadiazole FPR2 agonists with low nanomolar activity.
RESUMO
Owing to their participation in Click reactions, bifunctional azides are valuable intermediates in the preparation of medicines and biochemical tool compounds. Despite the privileged nature of pyridines among pharmaceutical scaffolds, reports of the synthesis and characterization of azidopyridines bearing a halogen substituent for further elaboration are almost completely unknown in the literature. As azidopyridines carry nearly equal numbers of nitrogen and carbon atoms, we hypothesized that safety concerns limited the application of these useful bifunctional building blocks in medicinal and biological chemistry. To address this concern, we prepared and characterized nine azidopyridines bearing a single fluorine, chlorine, or bromine atom. All were examined by differential scanning calorimetry (DSC), in which they demonstrated exotherms of 228-326 kJ/mol and onset temperatures between 119 and 135 °C. Selected azidopyridines were advanced to mechanical stress testing, in which impact sensitivity was noted for one regioisomer of C5H3FN4. The utility of these versatile intermediates was demonstrated through their use in a variety of Click reactions and the diversification of the halogen handles.
Assuntos
Azidas , PiridinasRESUMO
The infiltration of palladium and platinum nanoparticles (NPs) into the mesoporous metal-organic framework (MOF) CYCU-3 through chemical vapor infiltration (CVI) and incipient wetness infiltration (IWI) processes was systematically explored as a means to design novel NP@MOF composite materials for potential hydrogen storage applications. We employed a traditional CVI process and a new â³greenâ³ IWI process using methanol for precursor infiltration and reduction under mild conditions. Transmission electron microscopy-based direct imaging techniques combined with synchrotron-based powder diffraction (SPD), energy-dispersive X-ray spectroscopy, and physisorption analysis reveal that the resulting NP@MOF composites combine key NP and MOF properties. Room temperature hydrogen adsorption capacities of 0.95 and 0.20 mmol/g at 1 bar and 2.9 and 1.8 mmol/g at 100 bar are found for CVI and IWI samples, respectively. Hydrogen spillover and/or physisorption are proposed as the dominating adsorption mechanisms depending on the NP infiltration method. Mechanistic insights were obtained through the crystallographic means using SPD-based difference envelope density analysis, providing previously underexplored details on NP@MOF preparations. Consequently, important host-guest correlations influencing the global hydrogen adsorption properties are discussed, and they demonstrate that employing MOFs as platforms for NPs is an alternative approach to the development of versatile materials for improving current hydrogen storage technologies.
RESUMO
Metal-organic frameworks (MOFs) are promising materials for hydrogen storage that fail to achieve expected theoretical values of volumetric storage density due to poor powder packing. A strategy that improves packing efficiency and volumetric hydrogen gas storage density dramatically through engineered morphologies and controlled-crystal size distributions is presented that holds promise for maximizing storage capacity for a given MOF. The packing density improvement, demonstrated for the benchmark sorbent MOF-5, leads to a significant enhancement of volumetric hydrogen storage performance relative to commercial MOF-5. System model projections demonstrate that engineering of crystal morphology/size or use of a bimodal distribution of cubic crystal sizes in tandem with system optimization can surpass the 25 g/L volumetric capacity of a typical 700 bar compressed storage system and exceed the DOE targets 2020 volumetric capacity (30 g/L). Finally, a critical link between improved powder packing density and reduced damage upon compaction is revealed leading to sorbents with both high surface area and high density.
RESUMO
We describe a stereodefined synthesis of the newly identified non-natural phosphorothioate cyclic dinucleotide (CDN) STING agonist, BMT-390025. The new route avoids the low-yielding racemic approach using P(III)-based reagents, and the stereospecific assembly of the phosphorothioate linkages are forged via the recently invented P(V)-based platform of the so-called PSI (Ψ) reagent system. This P(V) approach allows for the complete control of chirality of the P-based linkages and enabled conclusive evidence of the absolute configuration. The new approach offers robust procedures for preparing the stereodefined CDN in eight steps starting from advanced nucelosides, with late-stage direct drop isolations and telescoped steps enabling an efficient scale-up that proceeded in an overall 15% yield to produce multigram amounts of the CDN.
RESUMO
Indole and indoline rings are important pharmacophoric scaffolds found in marketed drugs, agrochemicals, and biologically active molecules. The [2 + 2] cycloaddition reaction is a versatile strategy for constructing architecturally interesting, sp3-rich cyclobutane-fused scaffolds with potential applications in drug discovery programs. A general platform for visible-light mediated intermolecular [2 + 2] cycloaddition of indoles with alkenes has been realized. A substrate-based screening approach led to the discovery of tert-butyloxycarbonyl (Boc)-protected indole-2-carboxyesters as suitable motifs for the intermolecular [2 + 2] cycloaddition reaction. Significantly, the reaction proceeds in good yield with a wide variety of both activated and unactivated alkenes, including those containing free amines and alcohols, and the transformation exhibits excellent regio- and diastereoselectivity. Moreover, the scope of the indole substrate is very broad, extending to previously unexplored azaindole heterocycles that collectively afford fused cyclobutane containing scaffolds that offer unique properties with functional handles and vectors suitable for further derivatization. DFT computational studies provide insights into the mechanism of this [2 + 2] cycloaddition, which is initiated by a triplet-triplet energy transfer process. The photocatalytic reaction was successfully performed on a 100 g scale to provide the dihydroindole analog.
RESUMO
Poly[(µ4-3-carboxybenzenesulfonato)silver(I)], Ag(O3SC6H4CO2H) or [Ag(C7H5O5S)] n , has been found to undergo a reversible phase transition from monoclinic to triclinic between 160 and 150â K. The low-temperature triclinic structure (space group P ) has been determined at 100â K. In contrast to the reported room temperature monoclinic structure, in which the nearly equivalent carboxyl-ate C-O distances indicate that the acidic hydrogen is randomly distributed between the O atoms, at 100â K the C-O (protonated) and C=O (unprotonated) bonds are clearly resolved, resulting in the reduction in symmetry from C2/c to P .
RESUMO
We describe an efficient synthetic route to differentially protected diester, 1-(tert-butyl) 4-methyl (1R,2S,4R)-2-methylcyclohexane-1,4-dicarboxylate (+)-1, via palladium-catalyzed methoxycarbonylation of an enol triflate derived from a Hagemann's ester derivative followed by a stereoselective Crabtree hydrogenation. Diester 1 is a novel chiral synthon useful in drug discovery and was instrumental in the generation of useful SAR during a RORγt inverse agonist program. In addition, we describe a second-generation synthesis of the clinical candidate BMS-986251, using diester 1 as a critical component.
Assuntos
Ácidos Carboxílicos , Ésteres , Cicloexanos , EstereoisomerismoRESUMO
Practical applications involving the magnetic bistability of single-molecule magnets (SMMs) for next-generation computer technologies require nanostructuring, organization, and protection of nanoscale materials in two- or three-dimensional networks, to enable read-and-write processes. Owing to their porous nature and structural long-range order, metal-organic frameworks (MOFs) have been proposed as hosts to facilitate these efforts. Although probing the channels of MOF composites using indirect methods is well established, the use of direct methods to elucidate fundamental structural information is still lacking. Herein we report the direct imaging of SMMs encapsulated in a mesoporous MOF matrix using high-resolution transmission electron microscopy. These images deliver, for the first time, direct and unambiguous evidence to support the adsorption of molecular guests within the porous host. Bulk magnetic measurements further support the successful nanostructuring of SMMs. The preparation of the first magnetic composite thin films of this kind furthers the development of molecular spintronics.
RESUMO
This is the first systematic study exploring metal-organic frameworks (MOFs) as platforms for the controlled nanostructuring of molecular magnets. We report the incorporation of seven single-molecule magnets (SMMs) of general composition [Mn12O12(O2CR)16(OH2)4], with R = CF3 (1), (CH3)CCH2 (2), CH2Cl (3), CH2Br (4), CHCl2 (5), CH2But (6), and C6H5 (7), into the hexagonal channel pores of a mesoporous MOF host. The resulting nanostructured composites combine the key SMM properties with the functional properties of the MOF. Synchrotron-based powder diffraction with difference envelope density analysis, physisorption analysis (surface area and pore size distribution), and thermal analyses reveal that the well-ordered hexagonal structure of the host framework is preserved, and magnetic measurements indicate that slow relaxation of the magnetization, characteristic of the corresponding Mn12 derivative guests, occurs inside the MOF pores. Structural host-guest correlations including the bulkiness and polarity of peripheral SMM ligands are discussed as fundamental parameters influencing the global SMM@MOF loading capacities. These results demonstrate that employing MOFs as platforms for the nanostructuration of SMMs is not limited to a particular host-guest system but potentially applicable to a multitude of other molecular magnets. Such fundamental findings will assist in paving the way for the development of novel advanced spintronic devices.
RESUMO
Seven new zwitterionic metal-organic frameworks (ZW MOFs) of compositions {[Cd(L1)(OH2)]·2H2O}n (1), {[Mn(L1)(OH2)2]·H2O}n (2), {[Cu(HL1)2(OH2)3]·9H2O}n (3), {[Mn2(L2)2(OH2)4]·3H2O}n (4), [Co(L2)(OH2)4]·H2O (5), [Ni(L2)(OH2)3]n (6), and {[Cd(L2)(OH2)3]·4H2O}n (7), where H3L1Br = 3-carboxy-1-(3,5-dicarboxybenzyl)pyridinium bromide and H3L2Br = 4-carboxy-1-(3,5-dicarboxybenzyl)pyridinium bromide, have been synthesized under hydrothermal conditions. We demonstrate that the diversity of these crystal structures suggests that the tridentate and flexible nature of ZW ligands L1 and L2 make them excellent candidates for the synthesis of new ZW MOFs. A multi-charged anionic nature is a common feature of L1 and L2, and therefore, allows the rational design of ZW MOFs without the presence of additional counterions for charge compensation. All materials were structurally characterized by single-crystal X-ray diffraction and further characterized by elemental analyses, infrared spectroscopy (IR), powder X-ray diffraction (PXRD), thermogravimetric analyses (TGA), differential scanning calorimetry (DSC) and adsorption measurements. Most interestingly, permanent porosity could be observed for 1, originated from 4 Å channel pores and confirmed by methanol adsorption experiments, which yielded an uptake of 7.43 wt% at 25 °C; and respectively, anhydrates of 1, 2, 4 and 6 can be rehydrated upon exposure to ambient air, as evidenced by TGA and PXRD measurements. In addition, we report an in-depth CSD analysis of selected structural parameters, coordination modes and topologies exhibited by MOFs based on ZW ligands L1 and L2 along with the regio-isomeric analogue L3, where H3L3Br = N-(4-carboxybenzyl)-(3,5-dicarboxyl)pyridinium bromide.
RESUMO
Polymorphic phase transitions remain frequently undetected in routine metal-organic framework (MOF) studies; however, their discovery is of major importance in interpreting structure-property relationships. We herein report a reversible enantiotropic single-crystal to single-crystal polymorphic phase transition of a new microporous MOF [Eu(BDC)(NO3)(DMF)2]n (H2BDC = 1,4-benzenedicarboxylic acid; DMF = dimethylformamide). While modification 1LT at 170 K crystallizes in the monoclinic space group P21/c with unit cell dimensions of a = 17.673(2) Å, b = 20.023(2) Å, c = 10.555(9) Å, ß = 90.129(4)°, modification 1HT at 290 K crystallizes in higher symmetry space group C2/c with unit cell dimensions of a = 17.200(7) Å, b = 10.737(4) Å, c = 10.684(4) Å, ß = 90.136(2)°. This temperature-induced phase transition is accompanied by a small change in the solvent-accessible voids from 46.8 in 1LT to 49.8% in 1HT, which triggers a significant change in the adsorption properties as compared to a reported isostructural compound. Detailed investigations on the phase transition were studied with variable-temperature single-crystal X-ray diffraction (SCXRD), powder X-ray diffraction, and differential scanning calorimetry measurements. The herein-presented investigations emphasize the importance of polymorphic phase transitions in routine MOF studies originating from low-temperature SCXRD data and high-temperature physical property characterizations in avoiding the use of a wrong structure in interpreting structure-property relationships.
RESUMO
The prototypical single-molecule magnet (SMM) molecule [Mn12O12(O2CCH3)16(OH2)4] was incorporated under mild conditions into a highly porous metal-organic framework (MOF) matrix as a proof of principle for controlled nanostructuring of SMMs. Four independent experiments revealed that the SMM clusters were successfully loaded in the MOF pores, namely synchrotron-based powder diffraction, physisorption analysis, and in-depth magnetic and thermal analyses. The results provide incontrovertible evidence that the magnetic composite, SMM@MOF, combines key SMM properties with the functional properties of MOFs. Most importantly, the incorporated SMMs exhibit a significantly enhanced thermal stability with SMM loading advantageously occurring at the periphery of the bulk MOF crystals with only a single SMM molecule isolated in the transverse direction of the pores.
RESUMO
Two isostructural microporous zwitterionic metal-organic frameworks (ZW MOFs), {[M(bdcbpy)(OH2)4]·4H2O}n with M = Mn (1) and Ni (2), were synthesized by the rational design of the flexible anionic viologen derivate, 1,1'-bis(3,5-dicarboxybenzyl)-4,4'-bipyridinium dibromide dihydrate solvate (H4bdcbpyBr2·2H2O), and its self-assembly with metal(II) acetates in an aqueous medium. Single-crystal structure analyses revealed that both compounds exhibit three-dimensional hydrogen-bonded supramolecular frameworks with one-dimensional channel pores. Significantly, the pore surfaces are lined with charge gradients employed by the ZW ligand bdcbpy(2-) leading to the adsorption of hydrogen attributed to polarization effects. The thermostabilty and activation conditions were systematically investigated by thermogravimetric analysis, differential scanning calorimetry, and powder X-ray diffraction experiments. Furthermore, repeating cycles of reversible color changes are observed in air upon irradiation with UV light attributed to the formation of viologen radicals via an intermolecular electron transfer. This work also contains an in-depth literature analysis on ZW MOFs, which shows the need for the development of alternative routes for the rational design of new porous ZW MOFs.