Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 11: 816, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32431679

RESUMO

Filamentous yeast species belonging to the closely related Saprochaete clavata and Magnusiomyces spicifer were recently found to dominate biofilm communities on the retentate and permeate surface of Reverse Osmosis (RO) membranes used in a whey water treatment system after CIP (Cleaning-In-Place). Microscopy revealed that the two filamentous yeast species can cover extensive areas due to their large cell size and long hyphae formation. Representative strains from these species were here further characterized and displayed similar physiological and biochemical characteristics. Both strains tested were able to grow in twice RO-filtrated permeate water and metabolize the urea present. Little is known about the survival characteristics of these strains. Here, their tolerance toward heat (60, 70, and 80°C) and Ultraviolet light (UV-C) treatment at 255 nm using UV-LED was assessed as well as their ability to form biofilm and withstand cleaning associated stress. According to the heat tolerance experiments, the D60°C of S. clavata and M. spicifer is 16.37 min and 7.24 min, respectively, while a reduction of 3.5 to >4.5 log (CFU/mL) was ensured within 5 min at 70°C. UV-C light at a dose level 10 mJ/cm2 had little effect, while doses of 40 mJ/cm2 and upward ensured a ≥4log reduction in a static laboratory scale set-up. The biofilm forming potential of one filamentous yeast and one budding yeast, Sporopachydermia lactativora, both isolated from the same biofilm, was compared in assays employing flat-bottomed polystyrene microwells and peg lids, respectively. In these systems, employing both nutrient rich as well as nutrient poor media, only the filamentous yeast was able to create biofilm. However, on RO membrane coupons in static systems, both the budding yeast and a filamentous yeast were capable of forming single strain biofilms and when these coupons were exposed to different simulations of CIP treatments both the filamentous and budding yeast survived these. The dominance of these yeasts in some filter systems tested, their capacity to adhere and their tolerance toward relevant stresses as demonstrated here, suggest that these slow growing yeasts are well suited to initiate microbial biofouling on surfaces in low nutrient environments.

2.
J Dairy Sci ; 101(1): 135-146, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29055547

RESUMO

Reusing reverse osmosis (RO) membrane permeate instead of potable water in the dairy industry is a very appealing tactic. However, to ensure safe use, the quality of reclaimed water must be guaranteed. To do this, qualitative and quantitative information about which compounds permeate the membranes must be established. In the present study, we provide a detailed characterization of ultrafiltration, RO, and RO polisher (ROP) permeate with regard to organic and inorganic compounds. Results indicate that smaller molecules and elements (such as phosphate, but mainly urea and boron) pass the membrane, and a small set of larger molecules (long-chain fatty acids, glycerol-phosphate, and glutamic acid) are found as well, though in minute concentrations (<0.2 µM). Growth experiments with 2 urease-positive microorganisms, isolated from RO permeate, showed that the nutrient content in the ROP permeate supports limited growth of 1 of the 2 isolates, indicating that the ROP permeate may not be guaranteed to be stable during protracted storage.


Assuntos
Purificação da Água/métodos , Água/química , Indústria de Laticínios , Filtração , Cromatografia Gasosa-Espectrometria de Massas , Membranas Artificiais , Osmose , Ultrafiltração/métodos , Resíduos/análise , Purificação da Água/instrumentação
3.
Appl Spectrosc ; 71(3): 410-421, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27899431

RESUMO

Reuse of process water in dairy ingredient production-and food processing in general-opens the possibility for sustainable water regimes. Membrane filtration processes are an attractive source of process water recovery since the technology is already utilized in the dairy industry and its use is expected to grow considerably. At Arla Foods Ingredients (AFI), permeate from a reverse osmosis polisher filtration unit is sought to be reused as process water, replacing the intake of potable water. However, as for all dairy and food producers, the process water quality must be monitored continuously to ensure food safety. In the present investigation we found urea to be the main organic compound, which potentially could represent a microbiological risk. Near infrared spectroscopy (NIRS) in combination with multivariate modeling has a long-standing reputation as a real-time measurement technology in quality assurance. Urea was quantified Using NIRS and partial least squares regression (PLS) in the concentration range 50-200 ppm (RMSEP = 12 ppm, R2 = 0.88) in laboratory settings with potential for on-line application. A drawback of using NIRS together with PLS is that uncertainty estimates are seldom reported but essential to establishing real-time risk assessment. In a multivariate regression setting, sample-specific prediction errors are needed, which complicates the uncertainty estimation. We give a straightforward strategy for implementing an already developed, but seldom used, method for estimating sample-specific prediction uncertainty. We also suggest an improvement. Comparing independent reference analyses with the sample-specific prediction error estimates showed that the method worked on industrial samples when the model was appropriate and unbiased, and was simple to implement.

4.
Anal Bioanal Chem ; 408(1): 83-96, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26573172

RESUMO

Lactic acid bacteria with antifungal properties are applied for biopreservation of food. In order to further our understanding of their antifungal mechanism, there is an ongoing search for bioactive molecules. With a focus on the metabolites formed, bioassay-guided fractionation and comprehensive screening have identified compounds as antifungal. Although these are active, the compounds have been found in concentrations that are too low to account for the observed antifungal effect. It has been hypothesized that the formation of metabolites and consumption of nutrients during bacterial fermentations form the basis for the antifungal effect, i.e., the composition of the exometabolome. To build a more comprehensive view of the chemical changes induced by bacterial fermentation and the effects on mold growth, a strategy for correlating the exometabolomic profiles with mold growth was applied. The antifungal properties were assessed by measuring mold growth of two Penicillium strains on cell-free ferments of three strains of Lactobacillus paracasei pre-fermented in a chemically defined medium. Exometabolomic profiling was performed by reversed-phase liquid chromatography in combination with mass spectrometry in electrospray positive and negative modes. By multivariate data analysis, the three strains of Lb. paracasei were readily distinguished by the relative difference of their exometabolomes. The relative differences correlated with the relative growth of the two Penicillium strains. Metabolic footprinting proved to be a supplement to bioassay-guided fractionation for investigation of antifungal properties of bacterial ferments. Additionally, three previously identified and three novel antifungal metabolites from Lb. paracasei and their potential precursors were detected and assigned using the strategy.


Assuntos
Antifúngicos/metabolismo , Antifúngicos/farmacologia , Lactobacillus/metabolismo , Antifúngicos/química , Cromatografia de Fase Reversa , Lactobacillus/química , Espectrometria de Massas , Metabolômica , Penicillium/efeitos dos fármacos , Penicillium/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA