Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Microbiol ; 117(5): 1173-1195, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35344242

RESUMO

Aluminum salts have been successfully utilized as adjuvants to enhance the immunogenicity of vaccine antigens since the 1930s. However, the cellular mechanisms behind the immune adjuvanticity effect of these materials in antigen-presenting cells are poorly understood. In this study, we investigated the uptake and trafficking of aluminum oxy-hydroxide (AlOOH), in RAW 264.7 murine and U-937 human macrophages-like cells. Furthermore, we determined the impact that the adsorption to AlOOH particulates has on the trafficking of a Bordetella pertussis vaccine candidate, the genetically detoxified pertussis toxin (gdPT). Our results indicate that macrophages internalize AlOOH by constitutive macropinocytosis assisted by the filopodial protrusions that capture the adjuvant particles. Moreover, we show that AlOOH has the capacity to nonspecifically adsorb IgG, engaging opsonic phagocytosis, which is a feature that may allow for more effective capture and uptake of adjuvant particles by antigen-presenting cells (APCs) at the site of vaccine administration. We found that AlOOH traffics to endolysosomal compartments that hold degradative properties. Importantly, while we show that gdPT escapes degradative endolysosomes and traffics toward the retrograde pathway, as reported for the wild-type pertussis toxin, the adsorption to AlOOH diverts gdPT to traffic to the adjuvant's lysosome-type compartments, which may be key for MHC-II-driven antigen presentation and activation of CD4+ T cell. Thus, our findings establish a direct link between antigen adsorption to AlOOH and the intracellular trafficking of antigens within antigen-presenting cells and bring to light a new potential mechanism for aluminum adjuvancy. Moreover, the in-vitro single-cell approach described herein provides a general framework and tools for understanding critical attributes of other vaccine formulations.


Assuntos
Hidróxido de Alumínio , Alumínio , Adjuvantes Imunológicos/farmacologia , Alumínio/farmacologia , Hidróxido de Alumínio/farmacologia , Animais , Humanos , Lisossomos , Macrófagos , Camundongos , Toxina Pertussis/genética , Toxina Pertussis/farmacologia , Vacina contra Coqueluche/farmacologia
2.
J Agric Food Chem ; 53(2): 459-63, 2005 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-15656688

RESUMO

Recently, it was found that the addition of chitosan, a cationic polymer, to whole or skim milk produces the destabilization and coagulation of casein micelles which takes place without modifications in the milk pH or in the stability of most of the whey proteins. In the present work, Monte Carlo simulations are employed to show that the phase separation of casein micelles induced by chitosan can be explained by a depletion mechanism, where an effective attraction between the casein micelles is induced by the presence of chitosan molecules. This interaction is described on the basis of Vrij's model, where the depletion of polymer from the gap between neighboring casein micelles originates an effective attractive interaction that leads to a phase transition. This model, that considers volume restriction effects, accounts for several qualitative and even quantitative aspects of the experimental data for the coagulation of casein through chitosan addition.


Assuntos
Caseínas/química , Quitosana/química , Micelas , Método de Monte Carlo , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA