Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Cells ; 12(22)2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37998392

RESUMO

Trauma triggers a rapid innate immune response to aid the clearance of damaged/necrotic cells and their released damage-associated molecular pattern (DAMP). Here, we monitored the expression of EMR2/ADGRE2, involved in the functional regulation of innate immune cells, on circulating neutrophils in very severely and moderately/severely injured patients up to 240 h after trauma. Notably, neutrophilic EMR2 showed a uniform, injury severity- and type of injury-independent posttraumatic course in all patients. The percentage of EMR2+ neutrophils and their EMR2 level increased and peaked 48 h after trauma. Afterwards, they declined and normalized in some, but not all, patients. Circulating EMR2+ compared to EMR2- neutrophils express less CD62L and more CD11c, a sign of activation. Neutrophilic EMR2 regulation was verified in vitro. Remarkably, it increased, depending on extracellular calcium, in controls as well. Cytokines, enhanced in patients immediately after trauma, and sera of patients did not further affect this neutrophilic EMR2 increase, whereas apoptosis induction disrupted it. Likely the damaged/necrotic cells/DAMPs, unavoidable during neutrophil culture, stimulate the neutrophilic EMR2 increase. In summary, the rapidly increased absolute number of neutrophils, especially present in very severely injured patients, together with upregulated neutrophilic EMR2, may expand our in vivo capacity to react to and finally clear damaged/necrotic cells/DAMPs after trauma.


Assuntos
Neutrófilos , Receptores Acoplados a Proteínas G , Ferimentos e Lesões , Humanos , Citocinas/metabolismo , Neutrófilos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
3.
Cells ; 11(19)2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36231117

RESUMO

Among the 33 human adhesion G-protein-coupled receptors (aGPCRs), a unique subfamily of GPCRs, only ADGRF4, encoding GPR115, shows an obvious skin-dominated transcriptomic profile, but its expression and function in skin is largely unknown. Here, we report that GPR115 is present in a small subset of basal and in most suprabasal, noncornified keratinocytes of the stratified epidermis, supporting epidermal transcriptomic data. In psoriatic skin, characterized by hyperproliferation and delayed differentiation, the expression of GPR115 and KRT1/10, the fundamental suprabasal keratin dimer, is delayed. The deletion of ADGRF4 in HaCaT keratinocytes grown in an organotypic mode abrogates KRT1 and reduces keratinocyte stratification, indicating a role of GPR115 in epidermal differentiation. Unexpectedly, endogenous GPR115, which is not glycosylated and is likely not proteolytically processed, localizes intracellularly along KRT1/10-positive keratin filaments in a regular pattern. Our data demonstrate a hitherto unknown function of GPR115 in the regulation of epidermal differentiation and KRT1.


Assuntos
Células Epidérmicas , Queratinócitos , Criança , Células Epidérmicas/metabolismo , Epiderme/metabolismo , Humanos , Queratina-1/genética , Queratina-1/metabolismo , Queratinócitos/metabolismo , Queratinas/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
4.
Sci Total Environ ; 850: 157973, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35963408

RESUMO

Exposure to environmental pollutants via food, particularly during the prenatal and early postnatal periods, has been linked to adverse effects on the immune system. Among these pollutants, the widely used pesticide glyphosate has been associated with endocrine disruption, autism, and cancer. Occupational high exposure to glyphosate has also been shown to influence immune function and exacerbate allergic asthma. However, there are no studies investigating the effect of a common low-dose glyphosate exposure on the allergic immune response - neither directly nor across generations. We therefore explored the impact of oral low-dose glyphosate exposure (0.5 and 50 mg/kg body weight/day) on airway inflammation in dams (F0) and the offspring (F1 and F2 generations) using a murine multi-generational asthma model. While exposure to 50 mg/kg glyphosate induced a mild eosinophilic infiltration in the bronchoalveolar lavage and TH2 cytokine production in the dams, the F1 offspring developed a reduced immune response after maternal exposure to 0.5 mg/kg glyphosate. In particular, decreased lung inflammation, HDM-specific IgE levels, and asthma-relevant cytokine production were primarily observed in the female F1 offspring. However, not only the TH2 cytokines IL-13 and IL-5 but also the TH17 cytokine IL-17 and TH1 cytokine IFN-γ were reduced indicating a more general immunosuppressive function. Notably, the dampened immune response was no longer observed in the female F2 generation. Furthermore, female F1 offspring showed an increased abundance of bacteria in the gut, which have been associated with probiotic-mediated reduced allergic immune responses. Our results suggest a potential immunosuppressive effect of low-dose maternal glyphosate exposure in the F1 offspring that might be mediated by an altered microbiota composition. Further studies are needed to explore if this type of immune response modulation might also be associated with impairments in immune defense upon infectious diseases or even cancer pathology.


Assuntos
Asma , Poluentes Ambientais , Praguicidas , Animais , Citocinas , Feminino , Glicina/análogos & derivados , Imunidade , Imunoglobulina E , Interleucina-13 , Interleucina-17 , Interleucina-5 , Pulmão , Camundongos , Gravidez , Glifosato
5.
Cells ; 11(9)2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35563846

RESUMO

Tumorigenesis is a multistep process, during which cells acquire a series of mutations that lead to unrestrained cell growth and proliferation, inhibition of cell differentiation, and evasion of cell death. Growing tumors stimulate angiogenesis, providing them with nutrients and oxygen. Ultimately, tumor cells invade the surrounding tissue and metastasize; a process responsible for about 90% of cancer-related deaths. Adhesion G protein-coupled receptors (aGPCRs) modulate the cellular processes closely related to tumor cell biology, such as adhesion and detachment, migration, polarity, and guidance. Soon after first being described, individual human aGPCRs were found to be involved in tumorigenesis. Twenty-five years ago, CD97/ADGRE5 was discovered to be induced in one of the most severe tumors, dedifferentiated anaplastic thyroid carcinoma. After decades of research, the time has come to review our knowledge of the presence and function of CD97 in cancer. In summary, CD97 is obviously induced or altered in many tumor entities; this has been shown consistently in nearly one hundred published studies. However, its high expression at circulating and tumor-infiltrating immune cells renders the systemic targeting of CD97 in tumors difficult.


Assuntos
Antígenos CD/metabolismo , Neoplasias/patologia , Receptores Acoplados a Proteínas G/metabolismo , Proliferação de Células , Transformação Celular Neoplásica , Humanos , Neoplasias/metabolismo , Neovascularização Patológica
6.
EMBO Mol Med ; 14(4): e14990, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35253392

RESUMO

The heterogeneous response of acute myeloid leukemia (AML) to current anti-leukemic therapies is only partially explained by mutational heterogeneity. We previously identified GPR56 as a surface marker associated with poor outcome across genetic groups, which characterizes two leukemia stem cell (LSC)-enriched compartments with different self-renewal capacities. How these compartments self-renew remained unclear. Here, we show that GPR56+ LSC compartments are promoted in a complex network involving epithelial-to-mesenchymal transition (EMT) regulators besides Rho, Wnt, and Hedgehog (Hh) signaling. Unexpectedly, Wnt pathway inhibition increased the more immature, slowly cycling GPR56+ CD34+ fraction and Hh/EMT gene expression, while Wnt activation caused opposite effects. Our data suggest that the crucial role of GPR56 lies in its ability to co-activate these opposing signals, thus ensuring the constant supply of both LSC subsets. We show that CDK7 inhibitors suppress both LSC-enriched subsets in vivo and synergize with the Bcl-2 inhibitor venetoclax. Our data establish reciprocal transition between LSC compartments as a novel concept underlying the poor outcome in GPR56high AML and propose combined CDK7 and Bcl-2 inhibition as LSC-directed therapy in this disease.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Quinases Ciclina-Dependentes , Leucemia Mieloide Aguda , Inibidores de Proteínas Quinases , Sulfonamidas , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Proteína Quinase CDC2/antagonistas & inibidores , Quinases Ciclina-Dependentes/antagonistas & inibidores , Sinergismo Farmacológico , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/uso terapêutico , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/uso terapêutico , Sulfonamidas/farmacologia , Quinase Ativadora de Quinase Dependente de Ciclina
7.
Bioengineering (Basel) ; 10(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36671623

RESUMO

The implementation of stem-cell-based organoid culture more than ten years ago started a development that created new avenues for diagnostic analyses and regenerative medicine. In parallel, computational modelling groups realized the potential of this culture system to support their theoretical approaches to study tissues in silico. These groups developed computational organoid models (COMs) that enabled testing consistency between cell biological data and developing theories of tissue self-organization. The models supported a mechanistic understanding of organoid growth and maturation and helped linking cell mechanics and tissue shape in general. What comes next? Can we use COMs as tools to complement the equipment of our biological and medical research? While these models already support experimental design, can they also quantitatively predict tissue behavior? Here, we review the current state of the art of COMs and discuss perspectives for their application.

8.
Cells ; 10(12)2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34944065

RESUMO

Despite the immense functional relevance of GPR56 (gene ADGRG1) in highly diverse (patho)physiological processes such as tumorigenesis, immune regulation, and brain development, little is known about its exact tissue localization. Here, we validated antibodies for GPR56-specific binding using cells with tagged GPR56 or eliminated ADGRG1 in immunotechniques. Using the most suitable antibody, we then established the human GPR56 tissue expression profile. Overall, ADGRG1 RNA-sequencing data of human tissues and GPR56 protein expression correlate very well. In the adult brain especially, microglia are GPR56-positive. Outside the central nervous system, GPR56 is frequently expressed in cuboidal or highly prismatic secreting epithelia. High ADGRG1 mRNA, present in the thyroid, kidney, and placenta is related to elevated GPR56 in thyrocytes, kidney tubules, and the syncytiotrophoblast, respectively. GPR56 often appears in association with secreted proteins such as pepsinogen A in gastric chief cells and insulin in islet ß-cells. In summary, GPR56 shows a broad, not cell-type restricted expression in humans.


Assuntos
Carcinogênese/genética , Insulina/genética , Neoplasias/genética , Receptores Acoplados a Proteínas G/genética , Adesão Celular/genética , Celulas Principais Gástricas/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Insulina/biossíntese , Ilhotas Pancreáticas/metabolismo , Rim/metabolismo , Microglia/metabolismo , Microglia/patologia , Neoplasias/patologia , Pepsinogênio A/biossíntese , Pepsinogênio A/genética , Placenta/metabolismo , Gravidez , RNA-Seq , Glândula Tireoide/metabolismo
9.
Cells ; 10(7)2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34359888

RESUMO

Organoids retain the morphological and molecular patterns of their tissue of origin, are self-organizing, relatively simple to handle and accessible to genetic engineering. Thus, they represent an optimal tool for studying the mechanisms of tissue maintenance and aging. Long-term expansion under standard growth conditions, however, is accompanied by changes in the growth pattern and kinetics. As a potential explanation of these alterations, epigenetic drifts in organoid culture have been suggested. Here, we studied histone tri-methylation at lysine 4 (H3K4me3) and 27 (H3K27me3) and transcriptome profiles of intestinal organoids derived from mismatch repair (MMR)-deficient and control mice and cultured for 3 and 20 weeks and compared them with data on their tissue of origin. We found that, besides the expected changes in short-term culture, the organoids showed profound changes in their epigenomes also during the long-term culture. The most prominent were epigenetic gene activation by H3K4me3 recruitment to previously unmodified genes and by H3K27me3 loss from originally bivalent genes. We showed that a long-term culture is linked to broad transcriptional changes that indicate an ongoing maturation and metabolic adaptation process. This process was disturbed in MMR-deficient mice, resulting in endoplasmic reticulum (ER) stress and Wnt activation. Our results can be explained in terms of a mathematical model assuming that epigenetic changes during a long-term culture involve DNA demethylation that ceases if the metabolic adaptation is disturbed.


Assuntos
Epigênese Genética , Técnicas de Cultura de Órgãos , Organoides/metabolismo , Adaptação Fisiológica/genética , Animais , Histonas/metabolismo , Camundongos , Fatores de Tempo , Transcrição Gênica
10.
Int J Mol Sci ; 22(14)2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34298973

RESUMO

Intestinal cylindrical growth peaks in mice a few weeks after birth, simultaneously with crypt fission activity. It nearly stops after weaning and cannot be reactivated later. Transgenic mice expressing Cd97/Adgre5 in the intestinal epithelium develop a mega-intestine with normal microscopic morphology in adult mice. Here, we demonstrate premature intestinal differentiation in Cd97/Adgre5 transgenic mice at both the cellular and molecular levels until postnatal day 14. Subsequently, the growth of the intestinal epithelium becomes activated and its maturation suppressed. These changes are paralleled by postnatal regulation of growth factors and by an increased expression of secretory cell markers, suggesting growth activation of non-epithelial tissue layers as the origin of enforced tissue growth. To understand postnatal intestinal growth mechanistically, we study epithelial fate decisions during this period with the use of a 3D individual cell-based computer model. In the model, the expansion of the intestinal stem cell (SC) population, a prerequisite for crypt fission, is largely independent of the tissue growth rate and is therefore not spontaneously adaptive. Accordingly, the model suggests that, besides the growth activation of non-epithelial tissue layers, the formation of a mega-intestine requires a released growth control in the epithelium, enabling accelerated SC expansion. The similar intestinal morphology in Cd97/Adgre5 transgenic and wild type mice indicates a synchronization of tissue growth and SC expansion, likely by a crypt density-controlled contact inhibition of growth of intestinal SC proliferation. The formation of a mega-intestine with normal microscopic morphology turns out to originate in changes of autonomous and conditional specification of the intestinal cell fate induced by the activation of Cd97/Adgre5.


Assuntos
Simulação por Computador , Mucosa Intestinal/crescimento & desenvolvimento , Intestino Delgado/crescimento & desenvolvimento , Modelos Biológicos , Receptores Acoplados a Proteínas G/metabolismo , Células-Tronco/metabolismo , Animais , Fator 4 Semelhante a Kruppel , Camundongos , Camundongos Transgênicos , Técnicas de Cultura de Órgãos , Receptores Acoplados a Proteínas G/genética
11.
iScience ; 24(4): 102283, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33851099

RESUMO

VLGR1 (very large G protein-coupled receptor-1) is by far the largest adhesion G protein-coupled receptor in humans. Homozygous pathologic variants of VLGR1 cause hereditary deaf blindness in Usher syndrome 2C and haploinsufficiency of VLGR1 is associated with epilepsy. However, its molecular function remains elusive. Herein, we used affinity proteomics to identify many components of focal adhesions (FAs) in the VLGR1 interactome. VLGR1 is localized in FAs and assembles in FA protein complexes in situ. Depletion or loss of VLGR1 decreases the number and length of FAs in hTERT-RPE1 cells and in astrocytes of Vlgr1 mutant mice. VLGR1 depletion reduces cell spread and migration kinetics as well as the response to mechanical stretch characterizing VLGR1 as a metabotropic mechanosensor in FAs. Our data reveal a critical role of VLGR1 in the FA function and enlighten potential pathomechanisms in diseases related to VLGR1.

12.
Ann Transplant ; 25: e919414, 2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-32165607

RESUMO

BACKGROUND Transplantation of the liver entails a state of altered recipient immunologic competence. There are only scarce data concerning the impact of host immunologic factors on the outcome of liver transplant recipients in the context of hepatocellular carcinoma (HCC). MATERIAL AND METHODS Our study focused on evaluating the presence of tumor necrosis and frequency levels of angiopoietins and monocytes/macrophages subtypes in the host liver prior to liver transplantation (LTX) and their association with recurrence, graft rejection, survival, and clinical prognosis after LTX. Formation of tumor necrosis and tissue densities of angiopoietins and cellular immunologic infiltrates - CD68⁺ and CD163⁺ macrophages (TAMs) and TIE2-expressing monocytes (TEMs) - were quantified in recipient HCC specimens. The densities were then matched with clinicopathologic variables and patient survival after LTX (n=88). Some patients were treated prior to LTX by neoadjuvant transarterial chemoembolization (TACE, n=55). RESULTS Recipient hepatic infiltration with TEMs and CD68⁺ TAMs was associated with decreased 1-, 3-, and 5-year survival, as well as metastatic and recurrent HCC after LTX (all p<0.05). TEMs and infiltrating monocytes/macrophages were associated with angiopoietin expression, metastatic, and recurrent HCC (all p<0.05). Furthermore, hepatic angiopoietin-2 expression was associated with graft rejection after LTX (p<0.05). After TACE and LTX, formation of tumor necrosis was associated with an increased presence of monocytes/macrophages and a reduced incidence of recurrent HCC in the graft (all p<0.05). CONCLUSIONS Infiltrating monocytes/macrophages subsets and related angiopoietin axis are associated with worse survival, tumor recurrence, and clinical outcome after LTX for HCC.


Assuntos
Angiopoietinas/metabolismo , Carcinoma Hepatocelular/cirurgia , Rejeição de Enxerto/metabolismo , Neoplasias Hepáticas/cirurgia , Transplante de Fígado , Fígado/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Feminino , Rejeição de Enxerto/patologia , Sobrevivência de Enxerto , Humanos , Fígado/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Pessoa de Meia-Idade , Monócitos/metabolismo , Monócitos/patologia , Prognóstico , Resultado do Tratamento , Microambiente Tumoral/fisiologia
13.
Int J Mol Sci ; 21(6)2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32178409

RESUMO

Aberrant DNA methylation in stem cells is a hallmark of aging and tumor development. Recently, we have suggested that promoter DNA hyper-methylation originates in DNA repair and that even successful DNA repair might confer this kind of epigenetic long-term change. Here, we ask for interrelations between promoter DNA methylation and histone modification changes observed in the intestine weeks after irradiation and/or following Msh2 loss. We focus on H3K4me3 recruitment to the promoter of H3K27me3 target genes. By RNA- and histone ChIP-sequencing, we demonstrate that this recruitment occurs without changes of the average gene transcription and does not involve H3K9me3. Applying a mathematical model of epigenetic regulation of transcription, we show that the recruitment can be explained by stronger DNA binding of H3K4me3 and H3K27me3 histone methyl-transferases as a consequence of lower DNA methylation. This scenario implicates stable transcription despite of H3K4me3 recruitment, in agreement with our RNA-seq data. Following several kinds of stress, including moderate irradiation, stress-sensitive intestinal stem cell (ISCs) are known to become replaced by more resistant populations. Our simulation results suggest that the stress-resistant ISCs are largely protected against promoter hyper-methylation of H3K27me3 target genes.


Assuntos
Metilação de DNA/genética , DNA/genética , Histonas/genética , Intestinos/fisiologia , Regiões Promotoras Genéticas/genética , Células-Tronco/fisiologia , Animais , Epigênese Genética/genética , Código das Histonas/genética , Camundongos
14.
Atherosclerosis ; 295: 18-24, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31981947

RESUMO

BACKGROUND AND AIMS: Circulating sterols result either from cholesterol (CH) synthesis or intestinal uptake. They are mainly esterified and can be oxygenated. Sterols accumulate in atherosclerotic plaques whereby their clinical impact is uncertain. Here, we determined associations between circulating and plaque sterol levels in patients with advanced carotid artery stenosis in respect to a prior ischemic event and statin treatment. METHODS: Free and esterified CH, CH precursors and plant sterols as well as oxysterols were quantified by liquid chromatography-tandem mass spectrometry in 63 consecutive patients undergoing carotid endarterectomy. RESULTS: CH, CH precursors, plant sterols and oxysterols accumulated in carotid artery plaques. Absolute circulating sterol levels were not predictive for their corresponding plaque levels. After normalisation to CH, plant sterol but not oxysterol levels correlated between plasma and plaques. Among the circulating sterols, oxysterols occurred proportionally less in plaques. Furthermore, CH and plant sterols were less esterified in plaques than in plasma. Patients who experienced a prior ischemic event (n = 29) and asymptomatic patients had, except for lanosterol, comparable circulating sterol levels. In contrast, the absolute plaque levels of free CH, CH precursors and plant sterols as well as oxysterols were increased in symptomatic compared to asymptomatic patients. These differences remained significant for free CH, precursors and 3 out of 4 analyzed plant sterols after adjustment to the most influencing covariates - statin treatment, type 2 diabetes and age. CONCLUSIONS: Increased absolute plaque levels of free CH, precursors and plant sterols predict an ischemic event in patients with advanced carotid artery stenosis.


Assuntos
Estenose das Carótidas/complicações , Colesterol/metabolismo , Fitosteróis/metabolismo , Placa Aterosclerótica/complicações , Placa Aterosclerótica/metabolismo , Idoso , Estenose das Carótidas/metabolismo , Estenose das Carótidas/cirurgia , Estudos de Casos e Controles , Cromatografia Líquida , Endarterectomia das Carótidas , Feminino , Humanos , Masculino , Oxisteróis/metabolismo , Espectrometria de Massas em Tandem
15.
World J Surg Oncol ; 17(1): 217, 2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31830991

RESUMO

BACKGROUND: Tumor escape mechanisms mediated in the tumor microenvironment can significantly reduce the capacity of the anti-tumor function of the immune system. TIE2-expressing monocytes (TEMs), related angiopoietins, and tumor necrosis are considered to have a key role in this process. We aimed to investigate the abundance and clinical significance of these biomarkers in hepatocellular carcinoma (HCC). METHODS: In this retrospective study, 58 HCC patients received surgery with a curative intent. The abundance of TEMs, angiopoietin-1 and -2 were detected in tumor specimens of the HCC patients (n = 58), and together with the occurrence of histologic tumor necrosis, were associated with established clinicopathological characteristics and survival. RESULTS: Patients with HCC characterized by necrosis and TEMs revealed reduced both overall survival and recurrence-free survival (all p < 0.05). Angiopoietins and TEMs were associated with metastatic and recurrent HCC. Furthermore, the formation of histologic tumor necrosis was associated with advanced tumor stage and density of TEMs (all p < 0.05). CONCLUSIONS: Histologic tumor necrosis, TEMs, and related angiopoietins were associated with multiple HCC parameters and patient survival. The tumor necrosis-TEM-angiopoietin axis may offer a novel diagnostic modality to predict patient outcome after surgery for HCC.


Assuntos
Carcinoma Hepatocelular/patologia , Inflamação/patologia , Neoplasias Hepáticas/patologia , Monócitos/patologia , Angiopoietina-1/metabolismo , Angiopoietina-2/metabolismo , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/cirurgia , Feminino , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/cirurgia , Masculino , Pessoa de Meia-Idade , Monócitos/imunologia , Monócitos/metabolismo , Necrose , Gradação de Tumores , Neovascularização Patológica/imunologia , Neovascularização Patológica/patologia , Prognóstico , Receptor TIE-2/metabolismo , Estudos Retrospectivos , Evasão Tumoral , Microambiente Tumoral
16.
World J Surg Oncol ; 17(1): 97, 2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31170995

RESUMO

BACKGROUND: Anti-tumour immune competence has an impact in hepatocarcinogenesis and success of anti-cancer therapies. Tumour-infiltrating lymphocytes (TILs) and monocytes/macrophages (TAMs) are proposed to have significance in cancer. However, there is only limited data concerning their impact on patient outcome and survival in hepatocellular carcinoma (HCC). METHODS: Frequencies of CD68+, CD163+ M2-polarized TAMs and TILs were measured in de novo HCC tumours in non-cirrhosis (n = 58) using immunohistology and correlated to patients' clinicopathological characteristics and survival rates. RESULTS: Patients with tumours marked by appearance of TILs and CD68+ TAMs showed an improved 1-, 3- and 5-year recurrence-free survival (all p ≤ 0.05). CD68+ TAMs were associated with reduced incidence of recurrent and multifocal disease. Conversely, CD163+ TAMs were associated with multifocal HCC and lymphangiosis carcinomatosa (all p ≤ 0.05). CONCLUSIONS: TILs and CD68+ TAMs are associated with multiple tumour characteristics and patient survival in HCC. However, there is only scarce data about the biology underlying their mechanistic involvement in human tumour progression. Thus, experimental data on functional links might help develop novel immunologic checkpoint inhibitor targets for liver cancer.


Assuntos
Carcinoma Hepatocelular/mortalidade , Neoplasias Hepáticas/mortalidade , Linfócitos do Interstício Tumoral/imunologia , Macrófagos/imunologia , Recidiva Local de Neoplasia/mortalidade , Microambiente Tumoral/imunologia , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Feminino , Seguimentos , Humanos , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/imunologia , Recidiva Local de Neoplasia/patologia , Prognóstico , Estudos Retrospectivos , Taxa de Sobrevida
17.
Ann N Y Acad Sci ; 1456(1): 5-25, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31168816

RESUMO

The adhesion class of G protein-coupled receptors (GPCRs) is the second largest family of GPCRs (33 members in humans). Adhesion GPCRs (aGPCRs) are defined by a large extracellular N-terminal region that is linked to a C-terminal seven transmembrane (7TM) domain via a GPCR-autoproteolysis inducing (GAIN) domain containing a GPCR proteolytic site (GPS). Most aGPCRs undergo autoproteolysis at the GPS motif, but the cleaved fragments stay closely associated, with the N-terminal fragment (NTF) bound to the 7TM of the C-terminal fragment (CTF). The NTFs of most aGPCRs contain domains known to be involved in cell-cell adhesion, while the CTFs are involved in classical G protein signaling, as well as other intracellular signaling. In this workshop report, we review the most recent findings on the biology, signaling mechanisms, and physiological functions of aGPCRs.


Assuntos
Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Animais , Humanos , Receptores Acoplados a Proteínas G/química
18.
Clin Epigenetics ; 11(1): 65, 2019 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-31029155

RESUMO

BACKGROUND: Mismatch repair (MMR)-deficiency increases the risk of colorectal tumorigenesis. To determine whether the tumors develop on a normal or disturbed epigenetic background and how radiation affects this, we quantified genome-wide histone H3 methylation profiles in macroscopic normal intestinal tissue of young radiated and untreated MMR-deficient VCMsh2LoxP/LoxP (Msh2-/-) mice months before tumor onset. RESULTS: Histone H3 methylation increases in Msh2-/- compared to control Msh2+/+ mice. Activating H3K4me3 and H3K36me3 histone marks frequently accumulate at genes that are H3K27me3 or H3K4me3 modified in Msh2+/+ mice, respectively. The genes recruiting H3K36me3 enrich in gene sets associated with DNA repair, RNA processing, and ribosome biogenesis that become transcriptionally upregulated in the developing tumors. A similar epigenetic effect is present in Msh2+/+ mice 4 weeks after a single-radiation hit, whereas radiation of Msh2-/- mice left their histone methylation profiles almost unchanged. CONCLUSIONS: MMR deficiency results in genome-wide changes in histone H3 methylation profiles preceding tumor development. Similar changes constitute a persistent epigenetic signature of radiation-induced DNA damage.


Assuntos
Redes Reguladoras de Genes/efeitos da radiação , Histonas/metabolismo , Neoplasias Intestinais/etiologia , Intestinos/efeitos da radiação , Proteína 2 Homóloga a MutS/genética , Idoso , Animais , Estudos de Casos e Controles , Sequenciamento de Cromatina por Imunoprecipitação , Modelos Animais de Doenças , Epigênese Genética/efeitos da radiação , Feminino , Humanos , Neoplasias Intestinais/genética , Intestinos/química , Masculino , Camundongos , Sequenciamento Completo do Genoma
19.
Cell Rep ; 24(8): 1986-1995, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30134161

RESUMO

Cells respond to mechanical stimuli with altered signaling networks. Here, we show that mechanical forces rapidly induce phosphorylation of CD97/ADGRE5 (pCD97) at its intracellular C-terminal PDZ-binding motif (PBM). Biochemically, this phosphorylation disrupts CD97 binding to PDZ domains of the scaffold protein DLG1. In shear-stressed cells, pCD97 appears not only in junctions, retracting fibers, and the attachment area but also in lost membrane patches, demonstrating (intra)cellular detachment at the CD97 PBM. This motif is critical for the CD97-dependent mechanoresponse. Cells expressing CD97 without the PBM are more deformable, and under shear stress, these cells lose cell contacts faster and show changes in the actin cytoskeleton when compared with cells expressing full-length CD97. Our data indicate CD97 linkage to the cytoskeleton. Consistently, CD97 knockout phenocopies CD97 without the PBM, and membranous CD97 is organized in an F-actin-dependent manner. In summary, CD97 shapes the cellular mechanoresponse through signaling modulation via its PBM.


Assuntos
Antígenos CD/metabolismo , Domínios PDZ/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Humanos , Fosforilação , Ligação Proteica
20.
Oncotarget ; 9(51): 29715-29726, 2018 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-30038715

RESUMO

INTRODUCTION: M2-polarized tumor-associated macrophages (TAMs) and TIE2-expressing monocytes (TEMs) are associated with angiogenesis and have been identified as a potential prognostic marker in several solid tumors, including hepatobiliary malignancies. However, little is known regarding their influence on tumor progression and patient survival in pancreatic ductal adenocarcinoma (PDAC). RESULTS: Patients with tumors characterized by the presence of CD163+ TAMs or TEMs in TCA or TIF, respectively, showed a significantly decreased 1-, 3- and 5-year overall and recurrence-free survival compared to patients without CD163+ TAMs or TEMs (all ρ < 0.05). Patients with TEMs in TCA showed a higher incidence of tumor recurrence (ρ < 0.05). Furthermore, the presence of CD163+ TAMs was associated with a higher tumor MVD (ρ < 0.05). CONCLUSIONS: Presence of M2-polarized TAMs and TEMs is associated with a decreased overall and recurrence-free survival of patients with PDAC. MATERIALS AND METHODS: The localization and density of CD163+ M2-polarized TAMs and TEMs were quantified in the tumor central area (TCA) and tumor-infiltrating front (TIF) in human PDAC tissue (n = 106) and correlated to clinicopathological characteristics, tumor recurrence rates and patient survival. In parallel, tumor microvascular density (MVD) and the density of angiopoietin-positive tumor cells were quantified. Statistical analysis was performed using SPSS software.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA