Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(18): 11665-11674, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38661485

RESUMO

On-surface synthesis is a powerful method that has emerged recently to fabricate a large variety of atomically precise nanomaterials on surfaces based on polymerization. It is very successful for thermally activated reactions within the framework of heterogeneous catalysis. As a result, it often lacks selectivity. We propose to use selective activation of specific bonds as a crucial ingredient to synthesize desired molecules with high selectivity. In this approach, thermally nonaccessible products are expected to arise in photolytically activated on-surface reactions with high selectivity. We demonstrate for assembled 2,2'-dibromo biphenyl clusters on Cu(111) that the thermal and photolytic activations yield distinctly different products, combining submolecular resolution of individual product molecules in real-space imaging by scanning tunneling microscopy with chemical identification in X-ray photoelectron spectroscopy and supported by ab initio calculations. The photolytically activated Ullmann coupling of 2,2'-dibromo biphenyl is highly selective, with only one identified product. It starkly contrasts the thermal reaction, which yields various products because alternate pathways are activated at the reaction temperature. Our study extends on-surface synthesis to a directed formation of thermally inaccessible products by direct bond activation. It promises tailored reactions of nanomaterials within the framework of on-surface synthesis based on the photolytic activation of specific bonds.

2.
Nat Commun ; 13(1): 7070, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36400791

RESUMO

Constructing single atom catalysts with fine-tuned coordination environments can be a promising strategy to achieve satisfactory catalytic performance. Herein, via a simple calcination temperature-control strategy, CeO2 supported Pt single atom catalysts with precisely controlled coordination environments are successfully fabricated. The joint experimental and theoretical analysis reveals that the Pt single atoms on Pt1/CeO2 prepared at 550 °C (Pt/CeO2-550) are mainly located at the edge sites of CeO2 with a Pt-O coordination number of ca. 5, while those prepared at 800 °C (Pt/CeO2-800) are predominantly located at distorted Ce substitution sites on CeO2 terrace with a Pt-O coordination number of ca. 4. Pt/CeO2-550 and Pt/CeO2-800 with different Pt1-CeO2 coordination environments exhibit a reversal of activity trend in CO oxidation and NH3 oxidation due to their different privileges in reactants activation and H2O desorption, suggesting that the catalytic performance of Pt single atom catalysts in different target reactions can be maximized by optimizing their local coordination structures.

3.
PLoS One ; 12(3): e0174304, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28323894

RESUMO

We derived analytically and checked numerically a set of novel conditions for the existence and the stability of phase-locked modes in a biologically relevant master-slave neural network with a dynamic feedback loop. Since neural oscillators even in the three-neuron network investigated here receive multiple inputs per cycle, we generalized the concept of phase resetting to accommodate multiple inputs per cycle. We proved that the phase resetting produced by two or more stimuli per cycle can be recursively computed from the traditional, single stimulus, phase resetting. We applied the newly derived generalized phase resetting definition to predicting the relative phase and the stability of a phase-locked mode that was experimentally observed in this type of master-slave network with a dynamic loop network.


Assuntos
Potenciais de Ação/fisiologia , Ondas Encefálicas/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Transmissão Sináptica/fisiologia , Encéfalo/fisiologia , Biologia Computacional/métodos , Simulação por Computador , Modelos Neurológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA