RESUMO
Propionibacterium freudenreichii (PFR) DSM 20271T is a bacterium known for its ability to thrive in diverse environments and to produce vitamin B12. Despite its anaerobic preference, recent studies have elucidated its ability to prosper in the presence of oxygen, prompting a deeper exploration of its physiology under aerobic conditions. Here, we investigated the response of DSM 20271T to aerobic growth by employing comparative transcriptomic and surfaceome analyses alongside metabolite profiling. Cultivation under controlled partial pressure of oxygen (pO2) conditions revealed significant increases in biomass formation and altered metabolite production, notably of vitamin B12, pseudovitamin-B12, propionate, and acetate, under aerobic conditions. Transcriptomic analysis identified differential expression of genes involved in lactate metabolism, tricarboxylic acid cycle, and electron transport chain, suggesting metabolic adjustments to aerobic environments. Moreover, surfaceome analysis unveiled growth environment-dependent changes in surface protein abundance, with implications for adaptation to atmospheric conditions. Supplementation experiments with key compounds highlighted the potential for enhancing aerobic growth, emphasizing the importance of iron and α-ketoglutarate availability. Furthermore, in liquid culture, FeSO4 supplementation led to increased heme production and reduced vitamin B12 production, highlighting the impact of oxygen and iron availability on the metabolic pathways. These findings deepen our understanding of PFR's physiological responses to oxygen availability and offer insights for optimizing its growth in industrial applications. IMPORTANCE: The study of the response of Propionibacterium freudenreichii to aerobic growth is crucial for understanding how this bacterium adapts to different environments and produces essential compounds like vitamin B12. By investigating its physiological changes under aerobic conditions, we can gain insights into its metabolic adjustments and potential for enhanced growth. These findings not only deepen our understanding of P. freudenreichii's responses to oxygen availability but also offer valuable information for optimizing its growth in industrial applications. This research sheds light on the adaptive mechanisms of this bacterium, providing a foundation for further exploration and potential applications in various fields.
Assuntos
Adaptação Fisiológica , Propionibacterium freudenreichii , Transcriptoma , Propionibacterium freudenreichii/metabolismo , Propionibacterium freudenreichii/genética , Aerobiose , Perfilação da Expressão Gênica/métodos , Vitamina B 12/metabolismo , Regulação Bacteriana da Expressão Gênica , Oxigênio/metabolismoRESUMO
Endophytic bacterium Serratia plymuthica A30 was identified as a superior biocontrol agent due to its effective colonization of potato tuber, tolerance to cold conditions, and strong inhibitory action against various soft rot pathogens, including Dickeya solani. We characterized transcriptome changes in potato tubers inoculated with S. plymuthica A30, D. solani, or both at the early and the late phases of interaction. At the early phase and in the absence of the pathogen, A30 influenced the microbial recognition system to initiate plant priming. In the presence of the pathogen alongside biocontrol strain, defense signaling was highly stimulated, characterized by the induction of genes involved in the detoxification system, reinforcement of cell wall structure, and production of antimicrobial metabolites, highlighting A30's role in enhancing the host resistance against pathogen attack. This A30-induced resistance relied on the early activation of jasmonic acid signaling and its production in tubers, while defense signaling mediated by salicylic acid was suppressed. In the late phase, A30 actively interferes with plant immunity by inhibiting stress- and defense-related genes expression. Simultaneously, the genes involved in cell wall remodeling and indole-3-acetic acid signaling were activated, thereby enhancing cell wall remodeling to establish symbiotic relationship with the host. The endophytic colonization of A30 coincided with the induction of genes involved in the biosynthesis and signaling of ethylene and abscisic acid, while downregulating those related to gibberellic acid and cytokinin. This combination suggested fitness benefits for potato tubers by preserving dormancy, and delaying sprouting, which affects durability of tubers during storage. This study contributes valuable insights into the tripartite interaction among S. plymuthica A30, D. solani, and potato tubers, facilitating the development of biocontrol system for soft rot pathogens under storage conditions.
Assuntos
Dickeya , Perfilação da Expressão Gênica , Doenças das Plantas , Serratia , Solanum tuberosum , Solanum tuberosum/microbiologia , Serratia/fisiologia , Serratia/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Dickeya/genética , Tubérculos/microbiologia , Regulação da Expressão Gênica de Plantas , Transcriptoma , Resistência à Doença/genética , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Reguladores de Crescimento de Plantas/metabolismoRESUMO
The human gut microbiome composition has been linked to Parkinson's disease (PD). However, knowledge of the gut microbiota on the genome level is still limited. Here we performed deep metagenomic sequencing and binning to build metagenome-assembled genomes (MAGs) from 136 human fecal microbiomes (68 PD samples and 68 control samples). We constructed 952 non-redundant high-quality MAGs and compared them between PD and control groups. Among these MAGs, there were 22 different genomes of Collinsella and Prevotella, indicating high variability of those genera in the human gut environment. Microdiversity analysis indicated that Ruminococcus bromii was statistically significantly (p < 0.002) more diverse on the strain level in the control samples compared to the PD samples. In addition, by clustering all genes and performing presence-absence analysis between groups, we identified several control-specific (p < 0.05) related genes, such as speF and Fe-S oxidoreductase. We also report detailed annotation of MAGs, including Clusters of Orthologous Genes (COG), Cas operon type, antiviral gene, prophage, and secondary metabolites biosynthetic gene clusters, which can be useful for providing a reference for future studies.
Assuntos
Fezes , Microbioma Gastrointestinal , Metagenoma , Doença de Parkinson , Doença de Parkinson/genética , Doença de Parkinson/microbiologia , Humanos , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Metagenômica/métodos , Genoma Bacteriano , Masculino , Idoso , Feminino , Genoma Microbiano , Pessoa de Meia-Idade , Sequenciamento de Nucleotídeos em Larga EscalaRESUMO
Fecal calprotectin is an established marker of gut inflammation in inflammatory bowel disease (IBD). Elevated levels of fecal calprotectin as well as gut microbial dysbiosis have also been observed in other clinical conditions. However, systemic and multi-omics alterations linked to elevated fecal calprotectin in older individuals remain unclear. This study comprehensively investigated the relationship between fecal calprotectin levels, gut microbiome composition, serum inflammation and targeted metabolomics markers, and relevant lifestyle and medical data in a large sample of older individuals (n = 735; mean age ± SD: 68.7 ± 6.3) from the TREND cohort study. Low (0-50 µg/g; n = 602), moderate (> 50-100 µg/g; n = 64) and high (> 100 µg/g; n = 62) fecal calprotectin groups were stratified. Several pro-inflammatory gut microbial genera were significantly increased and short-chain fatty acid producing genera were decreased in high vs. low calprotectin groups. In serum, IL-17C, CCL19 and the toxic metabolite indoxyl sulfate were increased in high vs. low fecal calprotectin groups. These changes were partially mediated by the gut microbiota. Moreover, the high fecal calprotectin group showed increased BMI and a higher disease prevalence of heart attack and obesity. Our findings contribute to the understanding of fecal calprotectin as a marker of gut dysbiosis and its broader systemic and clinical implications in older individuals.
Assuntos
Biomarcadores , Disbiose , Fezes , Microbioma Gastrointestinal , Complexo Antígeno L1 Leucocitário , Humanos , Complexo Antígeno L1 Leucocitário/análise , Complexo Antígeno L1 Leucocitário/metabolismo , Fezes/microbiologia , Fezes/química , Disbiose/diagnóstico , Idoso , Feminino , Masculino , Biomarcadores/sangue , Biomarcadores/análise , Pessoa de Meia-Idade , Estudos de Coortes , Doenças Inflamatórias Intestinais/sangue , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/microbiologiaRESUMO
OBJECTIVE: To investigate the microbial changes of long-term hearing aid use culture independently. STUDY DESIGN: Cross-sectional study. PATIENTS: Fifty long-term hearing aid users and 80 volunteer controls with asymptomatic ears. INTERVENTION: External auditory canal (EAC) sampling with DNA-free swabs. MAIN OUTCOME MEASURES: Microbial communities in the samples were investigated with amplicon sequencing of the 16S rRNA gene. RESULTS: The final analysis contained 48 hearing aid users, 59 controls. Twenty-four samples were excluded because of low sequence count, recent use of antimicrobials and/or corticosteroids, recent cold, or missing health status. The groups showed significant differences in bacterial diversity (beta div., p = 0.011), and hearing aid users showed lower species richness than the control group (alpha div., p < 0.01). The most frequent findings in both groups were Staphylococcus auricularis , Alloiococcus otitis , Cutibacterium acnes , Corynebacterium otitidis , and Staphylococcus unclassified sp. Hearing aid users' samples presented more Corynebacterium tuberculostearicum than the control samples. Common EAC pathogens, such as Staphylococcus aureus or Pseudomonas aeruginosa were rare. CONCLUSION: Long-term hearing aid use lowers bacterial diversity and modulates the EAC microbiome. The changes mostly affect commensals. Lowered diversity may predispose individuals to EAC conditions and needs more research.
Assuntos
Meato Acústico Externo , Auxiliares de Audição , Microbiota , Humanos , Masculino , Meato Acústico Externo/microbiologia , Idoso , Feminino , Pessoa de Meia-Idade , Estudos Transversais , RNA Ribossômico 16S/genética , Idoso de 80 Anos ou mais , Adulto , Bactérias/genética , Bactérias/isolamento & purificaçãoRESUMO
BACKGROUND: The gut microbiome is a complex system within the human gastrointestinal tract. The bacteria play a significant role in human health, and some can promote inflammation and pathologic processes through chemical interactions or metabolites. Gut microbiome dysbiosis has been linked to some neurological and other diseases. Here we aimed to examine microbiome differences between patients with a progressive neurological disorder, idiopathic normal pressure hydrocephalus (iNPH), compared with healthy controls (CO). METHODS: We recruited 37 neurologically healthy CO and 10 patients with shunted iNPH. We evaluated these participants' cognition using the CERAD-NB test battery and CDR test, and collected a variety of information, including about dietary habits and health. We also collected fecal samples, which were subjected to 16S amplicon sequencing to analyze differences in gut microbiome composition. RESULTS: We found that the iNPH group exhibited significantly different abundances of 10 bacterial genera compared with the CO group. The Escherichia/Shigella and Anaeromassilibacillus genera were most remarkably increased. Other increased genera were Butyrivibrio , Duncaniella , and an unidentified genus. The decreased genera were Agathobaculum , Paramuribaculum , Catenibacterium , and 2 unidentified genera. CONCLUSIONS: Here we report the first identified microbiome differences in iNPH patients compared with healthy controls.
Assuntos
Microbioma Gastrointestinal , Hidrocefalia de Pressão Normal , Humanos , Microbioma Gastrointestinal/fisiologia , Hidrocefalia de Pressão Normal/microbiologia , Masculino , Feminino , Idoso , Disbiose/microbiologia , Fezes/microbiologia , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Pessoa de Meia-Idade , RNA Ribossômico 16S/genéticaRESUMO
BACKGROUND: JC polyomavirus (JCPyV) persists asymptomatic in more than half of the human population. Immunocompromising conditions may cause reactivation and acquisition of neurotropic rearrangements in the viral genome, especially in the non-coding control region (NCCR). Such rearranged JCPyV strains are strongly associated with the development of progressive multifocal leukoencephalopathy (PML). METHODS: Using next-generation sequencing (NGS) and bioinformatics tools, the NCCR was characterized in cerebrospinal fluid (CSF; N = 21) and brain tissue (N = 16) samples from PML patients (N = 25), urine specimens from systemic lupus erythematosus patients (N = 2), brain tissue samples from control individuals (N = 2) and waste-water samples (N = 5). Quantitative PCR was run in parallel for diagnostic PML samples. RESULTS: Archetype NCCR (i.e. ABCDEF block structure) and archetype-like NCCR harboring minor mutations were detected in two CSF samples and in one CSF sample and in one tissue sample, respectively. Among samples from PML patients, rearranged NCCRs were found in 8 out of 21 CSF samples and in 14 out of 16 brain tissue samples. Complete or partial deletion of the C and D blocks was characteristic of most rearranged JCPyV strains. From ten CSF samples and one tissue sample NCCR could not be amplified. CONCLUSIONS: Rearranged NCCRs are predominant in brain tissue and common in CSF from PML patients. Extremely sensitive detection and identification of neurotropic viral populations in CSF or brain tissue by NGS may contribute to early and accurate diagnosis, timely intervention and improved patient care.
Assuntos
Vírus JC , Leucoencefalopatia Multifocal Progressiva , Humanos , Vírus JC/genética , Sequenciamento de Nucleotídeos em Larga Escala , DNA Viral/genética , DNA Viral/líquido cefalorraquidiano , Leucoencefalopatia Multifocal Progressiva/diagnóstico , MutaçãoRESUMO
Progressive multifocal leukoencephalopathy (PML) is a rare neurological condition associated with reactivation of dormant JC polyomavirus (JCPyV). In this study, we characterized gene expression and JCPyV rearrangements in PML brain tissue. Infection of white matter astrocytes and oligodendrocytes as well as occasional brain cortex neurons was shown. PML brain harbored exclusively rearranged JCPyV variants. Viral transcripts covered the whole genome on both strands. Strong differential expression of human genes associated with neuroinflammation, blood-brain barrier permeability, and neurodegenerative diseases was shown. Pathway analysis revealed wide immune activation in PML brain. The study provides novel insights into the pathogenesis of PML.
Assuntos
Encéfalo , Vírus JC , Leucoencefalopatia Multifocal Progressiva , Leucoencefalopatia Multifocal Progressiva/virologia , Humanos , Vírus JC/genética , Encéfalo/virologia , Encéfalo/patologia , Masculino , Astrócitos/virologia , Astrócitos/metabolismo , Pessoa de Meia-Idade , Feminino , Idoso , Oligodendroglia/virologia , Oligodendroglia/metabolismoRESUMO
Land plants evolved multiple adaptations to restrict transpiration. However, the underlying molecular mechanisms are not sufficiently understood. We used an ozone-sensitivity forward genetics approach to identify Arabidopsis thaliana mutants impaired in gas exchange regulation. High water loss from detached leaves and impaired decrease of leaf conductance in response to multiple stomata-closing stimuli were identified in a mutant of MURUS1 (MUR1), an enzyme required for GDP-l-fucose biosynthesis. High water loss observed in mur1 was independent from stomatal movements and instead could be linked to metabolic defects. Plants defective in import of GDP-l-Fuc into the Golgi apparatus phenocopied the high water loss of mur1 mutants, linking this phenotype to Golgi-localized fucosylation events. However, impaired fucosylation of xyloglucan, N-linked glycans, and arabinogalactan proteins did not explain the aberrant water loss of mur1 mutants. Partial reversion of mur1 water loss phenotype by borate supplementation and high water loss observed in boron uptake mutants link mur1 gas exchange phenotypes to pleiotropic consequences of l-fucose and boron deficiency, which in turn affect mechanical and morphological properties of stomatal complexes and whole-plant physiology. Our work emphasizes the impact of fucose metabolism and boron uptake on plant-water relations.
Assuntos
Arabidopsis , Fucose , Fucose/metabolismo , Guanosina Difosfato Fucose/metabolismo , Boro/metabolismo , Arabidopsis/metabolismo , Polissacarídeos/metabolismoRESUMO
The Earth's polar regions are low rates of inter- and intraspecific diversification. An extreme mammalian example is the Arctic ringed seal (Pusa hispida hispida), which is assumed to be panmictic across its circumpolar Arctic range. Yet, local Inuit communities in Greenland and Canada recognize several regional variants; a finding supported by scientific studies of body size variation. It is however unclear whether this phenotypic variation reflects plasticity, morphs or distinct ecotypes. Here, we combine genomic, biologging and survey data, to document the existence of a unique ringed seal ecotype in the Ilulissat Icefjord (locally 'Kangia'), Greenland; a UNESCO World Heritage site, which is home to the most productive marine-terminating glacier in the Arctic. Genomic analyses reveal a divergence of Kangia ringed seals from other Arctic ringed seals about 240 kya, followed by secondary contact since the Last Glacial Maximum. Despite ongoing gene flow, multiple genomic regions appear under strong selection in Kangia ringed seals, including candidate genes associated with pelage coloration, growth and osmoregulation, potentially explaining the Kangia seal's phenotypic and behavioural uniqueness. The description of 'hidden' diversity and adaptations in yet another Arctic species merits a reassessment of the evolutionary processes that have shaped Arctic diversity and the traditional view of this region as an evolutionary freezer. Our study highlights the value of indigenous knowledge in guiding science and calls for efforts to identify distinct populations or ecotypes to understand how these might respond differently to environmental change.
Assuntos
Focas Verdadeiras , Animais , Focas Verdadeiras/genética , Canadá , Mamíferos , Regiões Árticas , GroenlândiaRESUMO
Stilbenes accumulate in Scots pine heartwood where they have important roles in protecting wood from decaying fungi. They are also part of active defense responses, and their production is induced by different (a)biotic stressors. The specific transcriptional regulators as well as the enzyme responsible for activating the stilbene precursor cinnamate in the pathway are still unknown. UV-C radiation was the first discovered artificial stress activator of the pathway. Here, we describe a large-scale transcriptomic analysis of pine needles in response to UV-C and treatment with translational inhibitors, both activating the transcription of stilbene pathway genes. We used the data to identify putative candidates for the missing CoA ligase and for pathway regulators. We further showed that the pathway is transcriptionally activated by phosphatase inhibitor, ethylene and jasmonate treatments, as in grapevine, and that the stilbene synthase promoter retains its inducibility in some of the tested conditions in Arabidopsis, a species that normally does not synthesize stilbenes. Shared features between gymnosperm and angiosperm regulation and partially retained inducibility in Arabidopsis suggest that pathway regulation occurs not only via ancient stress-response pathway(s) but also via species-specific regulators. Understanding which genes control the biosynthesis of stilbenes in Scots pine aids breeding of more resistant trees.
Assuntos
Arabidopsis , Estilbenos , Estilbenos/metabolismo , Transcriptoma , Arabidopsis/genética , Perfilação da Expressão Gênica , Árvores/genéticaRESUMO
Contact with natural environments enriches the human microbiome, promotes immune balance and protects against allergies and inflammatory disorders. In Finland, the allergy & asthma epidemic became slowly visible in mid 1960s. After the World War II, Karelia was split into Finnish and Soviet Union (now Russia) territories. This led to more marked environmental and lifestyle changes in the Finnish compared with Russian Karelia. The Karelia Allergy Study 2002-2022 showed that allergic conditions were much more common on the Finnish side. The Russians had richer gene-microbe network and interaction than the Finns, which associated with better balanced immune regulatory circuits and lower allergy prevalence. In the Finnish adolescents, a biodiverse natural environment around the homes associated with lower occurrence of allergies. Overall, the plausible explanation of the allergy disparity was the prominent change in environment and lifestyle in the Finnish Karelia from 1940s to 1980s. The nationwide Finnish Allergy Programme 2008-2018 implemented the biodiversity hypothesis into practice by endorsing immune tolerance, nature contacts, and allergy health with favorable results. A regional health and environment programme, Nature Step to Health 2022-2032, has been initiated in the City of Lahti, EU Green Capital 2021. The programme integrates prevention of chronic diseases (asthma, diabetes, obesity, depression), nature loss, and climate crisis in the spirit of Planetary Health. Allergic diseases exemplify inappropriate immunological responses to natural environment. Successful management of the epidemics of allergy and other non-communicable diseases may pave the way to improve human and environmental health.
RESUMO
Progressive multifocal leukoencephalopathy (PML) is a severe neurological condition caused by reactivation of JC polyomavirus (JCPyV) in immunosuppression. Asymptomatic JCPyV persists in peripheral tissues. Upon reactivation, neurotropic rearrangements may emerge, and the virus gains access to the brain. To assess the mechanisms of PML pathogenesis, brain tissue material from PML patients was collected for small RNA sequencing. Upregulation of 8 microRNAs (miRNAs) in PML brain was validated using quantitative microRNA polymerase chain reaction (PCR). Bioinformatics tools were utilized to identify major associations of the upregulated miRNAs: neuroinflammation and blood-brain barrier disruption. The results indicate involvement of human miRNA regulation in PML pathogenesis.
Assuntos
Vírus JC , Leucoencefalopatia Multifocal Progressiva , MicroRNAs , Humanos , Leucoencefalopatia Multifocal Progressiva/genética , Leucoencefalopatia Multifocal Progressiva/patologia , Vírus JC/genética , MicroRNAs/genética , Encéfalo/patologia , Sequência de BasesRESUMO
In the face of the human-caused biodiversity crisis, understanding the theoretical basis of conservation efforts of endangered species and populations has become increasingly important. According to population genetics theory, population subdivision helps organisms retain genetic diversity, crucial for adaptation in a changing environment. Habitat topography is thought to be important for generating and maintaining population subdivision, but empirical cases are needed to test this assumption. We studied Saimaa ringed seals, landlocked in a labyrinthine lake and recovering from a drastic bottleneck, with additional samples from three other ringed seal subspecies. Using whole-genome sequences of 145 seals, we analyzed the distribution of variation and genetic relatedness among the individuals in relation to the habitat shape. Despite a severe history of genetic bottlenecks with prevalent homozygosity in Saimaa ringed seals, we found evidence for the population structure mirroring the subregions of the lake. Our genome-wide analyses showed that the subpopulations had retained unique variation and largely complementary patterns of homozygosity, highlighting the significance of habitat connectivity in conservation biology and the power of genomic tools in understanding its impact. The central role of the population substructure in preserving genetic diversity at the metapopulation level was confirmed by simulations. Integration of genetic analyses in conservation decisions gives hope to Saimaa ringed seals and other endangered species in fragmented habitats.
Assuntos
Caniformia , Focas Verdadeiras , Animais , Humanos , Estudo de Associação Genômica Ampla , Genética Populacional , Ecossistema , Focas Verdadeiras/genética , Espécies em Perigo de Extinção , Caniformia/genética , Variação GenéticaRESUMO
BACKGROUND: Leuconostoc gelidum and Leuconostoc gasicomitatum have dual roles in foods. They may spoil cold-stored packaged foods but can also be beneficial in kimchi fermentation. The impact in food science as well as the limited number of publicly available genomes prompted us to create pangenomes and perform genomic taxonomy analyses starting from de novo sequencing of the genomes of 37 L. gelidum/L. gasicomitatum strains from our culture collection. Our aim was also to evaluate the recently proposed change in taxonomy as well as to study the genomes of strains with different lifestyles in foods. METHODS: We selected as diverse a set of strains as possible in terms of sources, previous genotyping results and geographical distribution, and included also 10 publicly available genomes in our analyses. We studied genomic taxonomy using pairwise average nucleotide identity (ANI) and calculation of digital DNA-DNA hybridisation (dDDH) scores. Phylogeny analyses were done using the core gene set of 1141 single-copy genes and a set of housekeeping genes commonly used for lactic acid bacteria. In addition, the pangenome and core genome sizes as well as some properties, such as acquired antimicrobial resistance (AMR), important due to the growth in foods, were analysed. RESULTS: Genome relatedness indices and phylogenetic analyses supported the recently suggested classification that restores the taxonomic position of L. gelidum subsp. gasicomitatum back to the species level as L. gasicomitatum. Genome properties, such as size and coding potential, revealed limited intraspecies variation and showed no attribution to the source of isolation. The distribution of the unique genes between species and subspecies was not associated with the previously documented lifestyle in foods. None of the strains carried any acquired AMR genes or genes associated with any known form of virulence. CONCLUSION: Genome-wide examination of strains confirms that the proposition to restore the taxonomic position of L. gasicomitatum is justified. It further confirms that the distribution and lifestyle of L. gelidum and L. gasicomitatum in foods have not been driven by the evolution of functional and phylogenetic diversification detectable at the genome level.
Assuntos
DNA , Leuconostoc , Filogenia , Leuconostoc/genética , Microbiologia de AlimentosRESUMO
Gut microbiota alterations in Parkinson's disease (PD) have been found in several studies and are suggested to contribute to the pathogenesis of PD. However, previous results could not be adequately adjusted for a potential confounding effect of PD medication and disease duration, as almost all PD participants were already using dopaminergic medication and were included several years after diagnosis. Here, the gut microbiome composition of treatment-naive de novo PD subjects was assessed compared to healthy controls (HC) in two large independent case-control cohorts (n = 136 and 56 PD, n = 85 and 87 HC), using 16S-sequencing of fecal samples. Relevant variables such as technical batches, diet and constipation were assessed for their potential effects. Overall gut microbiome composition differed between PD and HC in both cohorts, suggesting gut microbiome alterations are already present in de novo PD subjects at the time of diagnosis, without the possible confounding effect of dopaminergic medication. Although no differentially abundant taxon could be replicated in both cohorts, multiple short chain fatty acids (SCFA) producing taxa were decreased in PD in both cohorts. In particular, several taxa belonging to the family Lachnospiraceae were decreased in abundance. Fewer taxonomic differences were found compared to previous studies, indicating smaller effect sizes in de novo PD.
RESUMO
Severe acute respiratory syndrome coronavirus-2 is the causative agent of COVID-19. During the pandemic of 2019-2022, at least 500 million have been infected and over 6.3 million people have died from COVID-19. The virus is pleomorphic, and due to its pathogenicity is often handled in very restrictive biosafety containments laboratories. We developed two effective and rapid purification methods followed by UV inactivation that allow easy downstream handling of the virus. We monitored the purification through titering, sequencing, mass spectrometry and electron cryogenic microscopy. Although pelleting through a sucrose cushion, followed by gentle resuspension overnight gave the best particle recovery, infectivity decreased, and the purity was significantly worse than if using the size exclusion resin Capto Core. Capto Core can be used in batch mode, and was seven times faster than the pelleting method, obviating the need for ultracentrifugation in the containment laboratory, but resulting in a dilute virus. UV inactivation was readily optimized to allow handling of the inactivated samples under standard operating conditions. When containment laboratory space is limited, we recommend the use of Capto Core for purification and UV for inactivation as a simple, rapid workflow prior, for instance, to electron cryogenic microscopy or cell activation experiments.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Proteômica , Sacarose , Inativação de VírusRESUMO
BACKGROUND: The gut microbiome and its metabolites can impact brain health and are altered in Parkinson's disease (PD) patients. It has been recently demonstrated that PD patients have reduced fecal levels of the potent epigenetic modulator butyrate and its bacterial producers. OBJECTIVES: Here, we investigate whether the changes in the gut microbiome and associated metabolites are related to PD symptoms and epigenetic markers in leucocytes and neurons. METHODS: Stool, whole blood samples, and clinical data were collected from 55 PD patients and 55 controls. We performed DNA methylation analysis on whole blood samples and analyzed the results in relation to fecal short-chain fatty acid concentrations and microbiota composition. In another cohort, prefrontal cortex neurons were isolated from control and PD brains. We identified genome-wide DNA methylation by targeted bisulfite sequencing. RESULTS: We show that lower fecal butyrate and reduced counts of genera Roseburia, Romboutsia, and Prevotella are related to depressive symptoms in PD patients. Genes containing butyrate-associated methylation sites include PD risk genes and significantly overlap with sites epigenetically altered in PD blood leucocytes, predominantly neutrophils, and in brain neurons, relative to controls. Moreover, butyrate-associated methylated-DNA regions in PD overlap with those altered in gastrointestinal (GI), autoimmune, and psychiatric diseases. CONCLUSIONS: Decreased levels of bacterially produced butyrate are related to epigenetic changes in leucocytes and neurons from PD patients and to the severity of their depressive symptoms. PD shares common butyrate-dependent epigenetic changes with certain GI and psychiatric disorders, which could be relevant for their epidemiological relation. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Assuntos
Microbioma Gastrointestinal , Doença de Parkinson , Butiratos , Depressão/genética , Epigênese Genética , Microbioma Gastrointestinal/genética , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/genética , Doença de Parkinson/microbiologiaRESUMO
The robustness and sensitivity of gene networks to environmental changes is critical for cell survival. How gene networks produce specific, chronologically ordered responses to genome-wide perturbations, while robustly maintaining homeostasis, remains an open question. We analysed if short- and mid-term genome-wide responses to shifts in RNA polymerase (RNAP) concentration are influenced by the known topology and logic of the transcription factor network (TFN) of Escherichia coli. We found that, at the gene cohort level, the magnitude of the single-gene, mid-term transcriptional responses to changes in RNAP concentration can be explained by the absolute difference between the gene's numbers of activating and repressing input transcription factors (TFs). Interestingly, this difference is strongly positively correlated with the number of input TFs of the gene. Meanwhile, short-term responses showed only weak influence from the TFN. Our results suggest that the global topological traits of the TFN of E. coli shape which gene cohorts respond to genome-wide stresses.
Assuntos
Escherichia coli , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Escherichia coli/genética , RNA Polimerases Dirigidas por DNA/genéticaRESUMO
We aimed to investigate the link between serum metabolites, gut bacterial community composition, and clinical variables in Parkinson's disease (PD) and healthy control subjects (HC). A total of 124 subjects were part of the study (63 PD patients and 61 HC subjects). 139 metabolite features were found to be predictive between the PD and Control groups. No associations were found between metabolite features and within-PD clinical variables. The results suggest alterations in serum metabolite profiles in PD, and the results of correlation analysis between metabolite features and microbiota suggest that several bacterial taxa are associated with altered lipid and energy metabolism in PD.