Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Appl Opt ; 61(7): D30-D38, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35297826

RESUMO

This work investigates and applies machine learning paradigms seldom seen in analytical spectroscopy for quantification of gallium in cerium matrices via processing of laser-plasma spectra. Ensemble regressions, support vector machine regressions, Gaussian kernel regressions, and artificial neural network techniques are trained and tested on cerium-gallium pellet spectra. A thorough hyperparameter optimization experiment is conducted initially to determine the best design features for each model. The optimized models are evaluated for sensitivity and precision using the limit of detection (LoD) and root mean-squared error of prediction (RMSEP) metrics, respectively. Gaussian kernel regression yields the superlative predictive model with an RMSEP of 0.33% and an LoD of 0.015% for quantification of Ga in a Ce matrix. This study concludes that these machine learning methods could yield robust prediction models for rapid quality control analysis of plutonium alloys.


Assuntos
Plutônio , Algoritmos , Aprendizado de Máquina , Redes Neurais de Computação , Máquina de Vetores de Suporte
5.
Nature ; 599(7885): 421-424, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34789902

RESUMO

Californium (Cf) is currently the heaviest element accessible above microgram quantities. Cf isotopes impose severe experimental challenges due to their scarcity and radiological hazards. Consequently, chemical secrets ranging from the accessibility of 5f/6d valence orbitals to engage in bonding, the role of spin-orbit coupling in electronic structure, and reactivity patterns compared to other f elements, remain locked. Organometallic molecules were foundational in elucidating periodicity and bonding trends across the periodic table1-3, with a twenty-first-century renaissance of organometallic thorium (Th) through plutonium (Pu) chemistry4-12, and to a smaller extent americium (Am)13, transforming chemical understanding. Yet, analogous curium (Cm) to Cf chemistry has lain dormant since the 1970s. Here, we revive air-/moisture-sensitive Cf chemistry through the synthesis and characterization of [Cf(C5Me4H)2Cl2K(OEt2)]n from two milligrams of 249Cf. This bent metallocene motif, not previously structurally authenticated beyond uranium (U)14,15, contains the first crystallographically characterized Cf-C bond. Analysis suggests the Cf-C bond is largely ionic with a small covalent contribution. Lowered Cf 5f orbital energy versus dysprosium (Dy) 4f in the colourless, isoelectronic and isostructural [Dy(C5Me4H)2Cl2K(OEt2)]n results in an orange Cf compound, contrasting with the light-green colour typically associated with Cf compounds16-22.

6.
ACS Omega ; 4(1): 1375-1385, 2019 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-31459405

RESUMO

Evaluating the efficiency of predictive methods is critical to the processes of upscaling laboratory processes to full-scale operations on an industrial scale. With regard to separation of lanthanoids, there is a considerable motivation to optimize these processes because of immediate use in nuclear fuel cycle operations, nuclear forensics applications, and rare-earth metal recovery. Efficient predictive capabilities in Gibbs free energies of reaction are essential to optimize separations and ligand design for selective binding needed for various radiochemical applications such as nuclear fuel disposition and recycling of lanthanoid fission products into useful radioisotope products. Ligand design is essential for selective binding of lanthanoids, as separating contiguous lanthanoids is challenging because of the similar behavior these elements exhibit. Modeling including electronic structure calculations of lanthanoid-containing compounds is particularly challenging because of the associated computational cost encountered with the number of electrons correlated in these systems and relativistic considerations. This study evaluates the predictive capabilities of various ab initio methods in the calculation of Gibbs free energies of reaction for [Ln(NO3)]2+ compounds (with Ln = La to Lu), as nitrates are critical in traditional separation processes utilizing nitric acid. The composite methodologies evaluated predict Gibbs free energies of reaction for [Ln(NO3)]2+ compounds within 5 kcal mol-1 in most cases from the target method [CCSD(T)-FSII/cc-pwCV∞Z-DK3+SO] at a fraction of the computational cost.

7.
Appl Spectrosc ; 73(6): 591-600, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30990068

RESUMO

This work describes the use of a laser-induced breakdown spectroscopy (LIBS) system to conduct macroscopic elemental mapping of uranium and iron on the exterior surface and interior center cross-section of surrogate nuclear debris for the first time. The results suggest that similar LIBS systems could be packaged for use as an effective instrument for screening samples during collection activities in the field or to conduct process control measurements during the production of debris surrogates. The technique focuses on the mitigation of chemical and physical matrix effects of four uranium atomic emission lines, relatively free of interferences and of good analytical value. At a spatial resolution of 0.5 mm, a material fractionation pattern in the surrogate debris is identified and discussed in terms of constituent melting temperatures and thermal gradients experienced.

8.
ACS Omega ; 3(10): 13984-13993, 2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31458094

RESUMO

Knowledge-based design of extracting agents for selective binding of actinides is essential in stock-pile stewardship, environmental remediation, separations, and nuclear fuel disposal. Robust computational protocols are critical for in depth understanding of structural properties and to further advance the design of selective ligands. In particular, rapid radiochemical separations require predictive capabilities for binding in the gas phase. This study focuses on gas-phase binding preferences of cyclic imide dioximes to uranyl, neptunyl, plutonyl, and americyl. Structural properties, electron withdrawing effects, and their effects on binding preferences are studied with natural bond-order population analysis. The aromatic amidoximes are found to have a larger electron-donation effect than the aliphatic amidoximes. It is also found that plutonyl is more electron withdrawing than uranyl, neptunyl, and americyl when bound to the cyclic imide dioximes studied.

9.
ACS Omega ; 3(10): 14127-14143, 2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31458106

RESUMO

Efficient predictive capabilities are essential for the actinide series since regulatory constraints for radioactive work, associated costs needed for specialized facilities, and the short half-lives of many actinides present great challenges in laboratory settings. Improved predictive accuracy is advantageous for numerous applications including the optimization and design of separation agents for nuclear fuel and waste. One limitation of calculations in support of these applications is that the large variations observed from predictions obtained with currently available methods can make comparisons across studies uncertain. Benchmarking currently available computational methodologies is essential to establish reliable practices across the community to guarantee an accurate physical description of the systems studied. To understand the performance of a variety of common theoretical methods, a systematic analysis of differences observed in the prediction of structural characteristics, electron withdrawing effects, and binding energies of [An(NO3)]2+ (with An = Ac to Lr) in gas and aqueous phases is reported. Population analysis obtained with Mulliken and Löwdin reflect a large dependence on the level of theory of choice, whereas those obtained with natural bond orbital show larger consistency across methodologies. Predicted stability across the actinide series calculated with coupled cluster with perturbative doubles and triples at the triple ζ level is equivalent to the one obtained when extrapolated to the complete basis set limit. The ground state of [Fm(NO3)]2+ and [Md(NO3)]2+ is predicted to have an electronic structure corresponding to An III state in gas and An IV in aqueous phase, whereas the ground state of [An(NO3)]2+ (with An = Ac to Es, Lr) presents an electronic structure corresponding to An IV in the gas and aqueous phase. The compounds studied with No in gas and aqueous phase present a preferred No III state, and the Lr compounds did not follow trends predicted for the rest of the actinide series, as previously observed in studies regarding its unusual electronic structure relative to its position in the periodic table.

10.
J Radioanal Nucl Chem ; 312(2): 355-360, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28458412

RESUMO

Newly-established adsorption enthalpy and entropy values of 12 lanthanide hexafluoroacetylacetonates, denoted Ln[hfac]4, along with the experimental and theoretical methodology used to obtain these values, are presented for the first time. The results of this work can be used in conjunction with theoretical modeling techniques to optimize a large-scale gas-phase separation experiment using isothermal chromatography. The results to date indicate average adsorption enthalpy and entropy values of the 12 Ln[hfac]4 complexes ranging from -33 to -139 kJ/mol K and -299 to -557 J/mol, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA