Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 590, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755280

RESUMO

Infection of bacteria by phages is a complex multi-step process that includes specific recognition of the host cell, creation of a temporary breach in the host envelope, and ejection of viral DNA into the bacterial cytoplasm. These steps must be perfectly regulated to ensure efficient infection. Here we report the dual function of the tail completion protein gp16.1 of bacteriophage SPP1. First, gp16.1 has an auxiliary role in assembly of the tail interface that binds to the capsid connector. Second, gp16.1 is necessary to ensure correct routing of phage DNA to the bacterial cytoplasm. Viral particles assembled without gp16.1 are indistinguishable from wild-type virions and eject DNA normally in vitro. However, they release their DNA to the extracellular space upon interaction with the host bacterium. The study shows that a highly conserved tail completion protein has distinct functions at two essential steps of the virus life cycle in long-tailed phages.


Assuntos
Proteínas da Cauda Viral , Proteínas da Cauda Viral/metabolismo , Proteínas da Cauda Viral/genética , Bacteriófagos/genética , Bacteriófagos/fisiologia , Bacteriófagos/metabolismo , DNA Viral/metabolismo , DNA Viral/genética , Vírion/metabolismo
2.
J Mol Biol ; 433(18): 167112, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34153288

RESUMO

Siphoviruses are main killers of bacteria. They use a long non-contractile tail to recognize the host cell and to deliver the genome from the viral capsid to the bacterial cytoplasm. Here, we define the molecular organization of the Bacillus subtilis bacteriophage SPP1 ~ 6.8 MDa tail and uncover its biogenesis mechanisms. A complex between gp21 and the tail distal protein (Dit) gp19.1 is assembled first to build the tail cap (gp19.1-gp21Nter) connected by a flexible hinge to the tail fiber (gp21Cter). The tip of the gp21Cter fiber is loosely associated to gp22. The cap provides a platform where tail tube proteins (TTPs) initiate polymerization around the tape measure protein gp18 (TMP), a reaction dependent on the non-structural tail assembly chaperones gp17.5 and gp17.5* (TACs). Gp17.5 is essential for stability of gp18 in the cell. Helical polymerization stops at a precise tube length followed by binding of proteins gp16.1 (TCP) and gp17 (THJP) to build the tail interface for attachment to the capsid portal system. This finding uncovers the function of the extensively conserved gp16.1-homologs in assembly of long tails. All SPP1 tail components, apart from gp22, share homology to conserved proteins whose coding genes' synteny is broadly maintained in siphoviruses. They conceivably represent the minimal essential protein set necessary to build functional long tails. Proteins homologous to SPP1 tail building blocks feature a variety of add-on modules that diversify extensively the tail core structure, expanding its capability to bind host cells and to deliver the viral genome to the bacterial cytoplasm.


Assuntos
Bacillus subtilis/virologia , Capsídeo/metabolismo , Genoma Viral , Siphoviridae/fisiologia , Proteínas da Cauda Viral/metabolismo , Vírion/fisiologia , Montagem de Vírus , Chaperonas Moleculares , Siphoviridae/química , Siphoviridae/genética , Proteínas da Cauda Viral/genética
3.
Viruses ; 10(12)2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30544981

RESUMO

Bacillus subtilis bacteriophage SPP1 is a lytic siphovirus first described 50 years ago [1]. Its complete DNA sequence was reported in 1997 [2]. Here we present an updated annotation of the 44,016 bp SPP1 genome and its correlation to different steps of the viral multiplication process. Five early polycistronic transcriptional units encode phage DNA replication proteins and lysis functions together with less characterized, mostly non-essential, functions. Late transcription drives synthesis of proteins necessary for SPP1 viral particles assembly and for cell lysis, together with a short set of proteins of unknown function. The extensive genetic, biochemical and structural biology studies on the molecular mechanisms of SPP1 DNA replication and phage particle assembly rendered it a model system for tailed phages research. We propose SPP1 as the reference species for a new SPP1-like viruses genus of the Siphoviridae family.


Assuntos
Fagos Bacilares/genética , Bacillus subtilis/virologia , Genoma Viral , Replicação do DNA , DNA Viral/genética , Evolução Molecular , Genes Virais , Transcrição Gênica , Montagem de Vírus/genética
4.
J Biol Chem ; 290(6): 3836-49, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25525268

RESUMO

The majority of known bacteriophages have long tails that serve for bacterial target recognition and viral DNA delivery into the host. These structures form a tube from the viral capsid to the bacterial cell. The tube is formed primarily by a helical array of tail tube protein (TTP) subunits. In phages with a contractile tail, the TTP tube is surrounded by a sheath structure. Here, we report the first evidence that a phage TTP, gp17.1 of siphophage SPP1, self-assembles into long tubes in the absence of other viral proteins. gp17.1 does not exhibit a stable globular structure when monomeric in solution, even if it was confidently predicted to adopt the ß-sandwich fold of phage λ TTP. However, Fourier transform infrared and nuclear magnetic resonance spectroscopy analyses showed that its ß-sheet content increases significantly during tube assembly, suggesting that gp17.1 acquires a stable ß-sandwich fold only after self-assembly. EM analyses revealed that the tube is formed by hexameric rings stacked helicoidally with the same organization and helical parameters found for the tail of SPP1 virions. These parameters were used to build a pseudo-atomic model of the TTP tube. The large loop spanning residues 40-56 is located on the inner surface of the tube, at the interface between adjacent monomers and hexamers. In line with our structural predictions, deletion of this loop hinders gp17.1 tube assembly in vitro and interferes with SPP1 tail assembly during phage particle morphogenesis in bacteria.


Assuntos
Dobramento de Proteína , Proteínas Virais/química , Sequência de Aminoácidos , Bacteriófagos/química , Dados de Sequência Molecular , Estrutura Terciária de Proteína
5.
Mol Microbiol ; 91(6): 1164-78, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24443902

RESUMO

Bacteriophage SPP1 is a nanomachine built to infect the bacterium Bacillus subtilis. The phage particle is composed of an icosahedric capsid, which contains the viral DNA, and a long non-contractile tail. Capsids and tails are produced in infected cells by two distinct morphogenetic pathways. Characterization of the suppressor-sensitive mutant SPP1sus82 showed that it produces DNA-filled capsids and tails but is unable to assemble complete virions. Its purified tails have a normal length but lack a narrow ring that tapers the tail end found at the tail-to-head interface. The mutant is defective in production of gp17. The gp17 ring is exposed in free tails competent for viral assembly but becomes shielded in the final virion structure. Recombinant gp17 is active in an in vitro assay to stick together capsids and tails present in extracts of SPP1sus82-infected cells, leading to formation of infectious particles. Gp17 thus plays a fundamental role in the tail-to-head joining reaction, the ultimate step of virus particle assembly. This is the conserved function of gp17 and its structurally related proteins like lambda gpU. This family of proteins can also provide fidelity to termination of the tail tube elongation reaction in a subset of phages including coliphage lambda.


Assuntos
Fagos Bacilares/fisiologia , Bacillus subtilis/virologia , Proteínas Estruturais Virais/metabolismo , Montagem de Vírus , Ligação Proteica
6.
Mol Microbiol ; 83(2): 289-303, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22171743

RESUMO

Bacteriophages recognize and bind specific receptors to infect suitable hosts. Bacteriophage SPP1 targets at least two receptors of the Bacillus subtilis cell envelope, the glucosylated wall teichoic acids and the membrane protein YueB. Here, we identify a key virion protein for YueB binding and for the trigger of DNA ejection. Extracts from B. subtilis-infected cells applied to a YueB affinity matrix led to preferential capturing of gp21 from SPP1. To assess the significance of this interaction, we isolated mutant phages specifically affected in YueB binding. The mutants exhibited a very low inactivation rate and a strong defect to eject DNA when challenged with YueB. The phenotype correlated with presence of a single amino acid substitution in the gp21 carboxyl terminus, defining a region involved in YueB binding. Immunoelectron microscopy located the gp21 N-terminus in the SPP1 cap and probably in the adjacent tail spike region whereas the gp21 C-terminus was mapped further down in the spike structure. Antibodies against this part of gp21 interfered with the interaction of YueB with SPP1 and triggered DNA ejection. The gp21 C-terminal region thus plays a central role in two early key events that commit the virus to deliver its genome into host cells.


Assuntos
Fagos Bacilares/fisiologia , Bacillus subtilis/virologia , DNA Viral/metabolismo , Interações Hospedeiro-Parasita , Proteínas da Cauda Viral/metabolismo , Ligação Viral , Internalização do Vírus , Proteínas de Bactérias/metabolismo , Análise Mutacional de DNA , Glicosídeo Hidrolases , Proteínas de Membrana/metabolismo , Microscopia Imunoeletrônica , Mutação de Sentido Incorreto , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteínas da Cauda Viral/genética , Vírion/química , Vírion/ultraestrutura
8.
J Biol Chem ; 286(28): 25397-405, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21622577

RESUMO

The SPP1 siphophage uses its long non-contractile tail and tail tip to recognize and infect the Gram-positive bacterium Bacillus subtilis. The tail-end cap and its attached tip are the critical components for host recognition and opening of the tail tube for genome exit. In the present work, we determined the cryo-electron microscopic (cryo-EM) structure of a complex formed by the cap protein gp19.1 (Dit) and the N terminus of the downstream protein of gp19.1 in the SPP1 genome, gp21(1-552) (Tal). This complex assembles two back-to-back stacked gp19.1 ring hexamers, interacting loosely, and two gp21(1-552) trimers interacting with gp19.1 at both ends of the stack. Remarkably, one gp21(1-552) trimer displays a "closed" conformation, whereas the second is "open" delineating a central channel. The two conformational states dock nicely into the EM map of the SPP1 cap domain, respectively, before and after DNA release. Moreover, the open/closed conformations of gp19.1-gp21(1-552) are consistent with the structures of the corresponding proteins in the siphophage p2 baseplate, where the Tal protein (ORF16) attached to the ring of Dit (ORF15) was also found to adopt these two conformations. Therefore, the present contribution allowed us to revisit the SPP1 tail distal-end architectural organization. Considering the sequence conservation among Dit and the N-terminal region of Tal-like proteins in Gram-positive-infecting Siphoviridae, it also reveals the Tal opening mechanism as a hallmark of siphophages probably involved in the generation of the firing signal initiating the cascade of events that lead to phage DNA release in vivo.


Assuntos
Bacillus subtilis/virologia , Genoma Viral/fisiologia , Siphoviridae/fisiologia , Proteínas Estruturais Virais/metabolismo , Ligação Viral , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Bacillus subtilis/ultraestrutura , Estrutura Terciária de Proteína , Siphoviridae/ultraestrutura , Proteínas Estruturais Virais/genética
9.
J Biol Chem ; 285(47): 36666-73, 2010 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-20843802

RESUMO

Siphophage SPP1 infects the gram-positive bacterium Bacillus subtilis using its long non-contractile tail and tail-tip. Electron microscopy (EM) previously allowed a low resolution assignment of most orf products belonging to these regions. We report here the structure of the SPP1 distal tail protein (Dit, gp19.1). The combination of x-ray crystallography, EM, and light scattering established that Dit is a back-to-back dimer of hexamers. However, Dit fitting in the virion EM maps was only possible with a hexamer located between the tail-tube and the tail-tip. Structure comparison revealed high similarity between Dit and a central component of lactophage baseplates. Sequence similarity search expanded its relatedness to several phage proteins, suggesting that Dit is a docking platform for the tail adsorption apparatus in Siphoviridae infecting gram-positive bacteria and that its architecture is a paradigm for these hub proteins. Dit structural similarity extends also to non-contractile and contractile phage tail proteins (gpV(N) and XkdM) as well as to components of the bacterial type 6 secretion system, supporting an evolutionary connection between all these devices.


Assuntos
Bacillus subtilis/virologia , Bacteriófagos/metabolismo , Siphoviridae/genética , Proteínas da Cauda Viral/química , Bacteriófagos/genética , Cristalografia por Raios X , Conformação Proteica , Proteínas Virais Reguladoras e Acessórias , Proteínas da Cauda Viral/genética , Proteínas da Cauda Viral/metabolismo , Vírion/metabolismo
10.
Mol Microbiol ; 70(3): 557-69, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18786146

RESUMO

The majority of bacteriophages have a long non-contractile tail (Siphoviridae) that serves as a conduit for viral DNA traffic from the phage capsid to the host cell at the beginning of infection. The 160-nm-long tail tube of Bacillus subtilis bacteriophage SPP1 is shown to be composed of two major tail proteins (MTPs), gp17.1 and gp17.1*, at a ratio of about 3:1. They share a common amino-terminus, but the latter species has approximately 10 kDa more than gp17.1. A CCC.UAA sequence with overlapping proline codons at the 3' end of gene 17.1 drives a programmed translational frameshift to another open reading frame. The recoding event generates gp17.1*. Phages carrying exclusively gp17.1 or gp17.1* are viable, but tails are structurally distinct. gp17.1 and the carboxyl-terminus of gp17.1* have a distinct evolutionary history correlating with different functions: the polypeptide sequence identical in the two proteins is responsible for assembly of the tail tube while the additional module of gp17.1* shields the structure exterior exposed to the environment. The carboxyl-terminal extension is an elaboration present in some tailed bacteriophages. Different extensions were found to combine in a mosaic fashion with the MTP essential module in a subset of Siphoviridae genomes.


Assuntos
Fagos Bacilares/genética , Mudança da Fase de Leitura do Gene Ribossômico , Proteínas da Cauda Viral/genética , Fagos Bacilares/fisiologia , Bacillus subtilis/virologia , DNA Viral/genética , Escherichia coli/genética , Evolução Molecular , Genes Virais , Genoma Viral , Mutagênese Sítio-Dirigida , Mutação , Conformação de Ácido Nucleico , Fases de Leitura Aberta , Plasmídeos , Homologia de Sequência de Aminoácidos , Replicação Viral/genética
11.
EMBO J ; 26(15): 3720-8, 2007 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-17611601

RESUMO

The majority of known bacteriophages have long noncontractile tails (Siphoviridae) that serve as a pipeline for genome delivery into the host cytoplasm. The tail extremity distal from the phage head is an adsorption device that recognises the bacterial receptor at the host cell surface. This interaction generates a signal transmitted to the head that leads to DNA release. We have determined structures of the bacteriophage SPP1 tail before and after DNA ejection. The results reveal extensive structural rearrangements in the internal wall of the tail tube. We propose that the adsorption device-receptor interaction triggers a conformational switch that is propagated as a domino-like cascade along the 1600 A-long helical tail structure to reach the head-to-tail connector. This leads to opening of the connector culminating in DNA exit from the head into the host cell through the tail tube.


Assuntos
Bacteriófagos/genética , DNA Viral/química , DNA Viral/genética , DNA Viral/ultraestrutura , Microscopia Eletrônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA