Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Bioprint ; 8(3): 586, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105128

RESUMO

Additive manufacturing (AM) technologies have disrupted many supply chains by making new designs and functionalities possible. The opportunity to realize complex customized structures has led to significant interest within healthcare; however, full utilization critically requires the alignment of the whole supply chain. To offer insights into this process, a survey was conducted to understand the views of different medical AM stakeholders. The results highlighted an agreement between academics, designers, manufacturers, and medical experts, that personalization and design control are the main benefits of AM. Interestingly, surface finish was consistently identified as an obstacle. Nevertheless, there was a degree of acceptance that post-processing was necessary to achieve appropriate quality control. Recommendations were made for extending the use of in situ process monitoring systems to support improved reproducibility. Variations in the future vision of AM were highlighted between stakeholder groups and areas of interest for development noted for each stakeholder. Collectively, this survey indicates that medical stakeholders agree on the capabilities of AM but have different priorities for its implementation and progression. This highlights a degree of disconnection among the supply chain at a ground level; thus, collaboration on AM specific standards and enhancement of communication between stakeholders from project inception is recommended.

2.
Stem Cells Int ; 2021: 6681771, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815511

RESUMO

Mobilization of naïve bone marrow mesenchymal stromal cells (BMSCs) is crucial to desired bone regeneration in both orthopedic and dental contexts. In such conditions, mesenchymal progenitor cell populations from human exfoliated deciduous teeth (SHEDs) present advantageous multipotent properties with easy accessibility which makes them a good candidate in both bone and periodontal tissue regeneration. Extracellular vesicles (EVs) are a functional membranous structure which could participate in multiple cell interactions and imitate the biological functions of their parenting cells largely. To assess their ability to mobilize naïve BMSCs in the bone repair process, Nanosight Tracking Analysis (NTA) and Enzyme-Linked Immunosorbent Assays (ELISA) were performed to illustrate the composition and functional contents of EV samples derived from SHEDs with different culturing time (24 h, 48 h, and 72 h). Afterwards, the Boyden chamber assay was performed to compare their capacity for mobilizing naïve BMSCs. One-way analysis of variance (ANOVA) with a post hoc Turkey test was performed for statistical analysis. SHEDs-derived EVs collected from 24 h, 48 h, and 72 h time points, namely, EV24, EV48, and EV72, were mainly secreted as exosomes and tended to reform into smaller size as a result of sonication indicated by NTA results. Moreover, different EV groups were found to be abundant with multiple growth factors including transforming growth factor-ß1 (TGF-ß1), platelet-derived growth factor (PDGF), insulin-like growth factor-1 (IGF-1), and fibroblast growth factor-2 (FGF-2) given the detections through ELISA. Boyden chamber assays implied the migratory efficiency of BMSCs driven by EVs at varying concentrations. However, the results showed that migration of BMSCs driven by different EV groups was not statistically significant even with chemotactic factors contained (P > 0.05). Taken together, these data suggest that EVs derived from SHEDs are secreted in functional forms and present a potential of mobilizing naïve BMSCs, which may propose their relevance in assisting bone regeneration.

3.
Tissue Eng Part B Rev ; 26(3): 217-229, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31952457

RESUMO

The success of implantable devices relies heavily on their interaction with the host cells facilitating the osseointegration process. However, with so many new surface modifications, with subtly varying design parameters, in vitro assays can, with proper interpretation, provide valuable information for understanding cellular behavior. This review brings together pertinent in vitro experimental protocols available to researchers and discusses them in relationship to the development of the osteoblast phenotype during bone repair. Consideration is also paid to the influence of endothelial and macrophage cells that can substantially change osteogenic cell activity and thus can provide added value for predicting the osseointegration potential in vivo. Due to the diverse and heterogeneous nature of cell types available for culture use, this review concludes that there is no "gold standard" series of assays. Rather, we present guidance in the experimental design of in vitro assays to better identify those surfaces with promising osteogenic potential. Impact statement Titanium implants are already widely used in orthopedics and dentistry, yet, intensive research continues with the aim of modifying and functionalizing implant surfaces to invoke a stronger bone response and to meet current clinical challenges around improving longevity, decreasing morbidity, widening access, and clinical application. A very large number of surface modifications have been studied and the potential for new designs appears to be limitless as new technology grows. This review provides guidance for in vitro assays available to test these technologies, providing a cost-effective means for acquiring robust and physiologically relevant data, before in vivo examination.


Assuntos
Bioensaio/métodos , Osteogênese , Próteses e Implantes , Animais , Biomarcadores/metabolismo , Humanos , Osteoblastos/citologia , Propriedades de Superfície
4.
J Tissue Eng ; 10: 2041731419852703, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31210921

RESUMO

Poly(L-lactide-co-ε-caprolactone) scaffolds were functionalised by 10 or 20 µg/mL of human demineralised dentine matrix. Release kinetics up to 21 days and their osteogenic potential on human bone marrow stromal cells after 7 and 21 days were studied. A total of 390 proteins were identified by mass spectrometry. Bone regeneration proteins showed initial burst of release. Human bone marrow stromal cells were cultured on scaffolds physisorbed with 20 µg/mL and cultured in basal medium (DDM group) or physisorbed and cultured in osteogenic medium or cultured on non-functionalised scaffolds in osteogenic medium. The human bone marrow stromal cells proliferated less in demineralised dentine matrix group and activated ERK/1/2 after both time points. Cells on DDM group showed highest expression of IL-6 and IL-8 at 7 days and expressed higher collagen type 1 alpha 2, SPP1 and bone morphogenetic protein-2 until 21 days. Extracellular protein revealed higher collagen type 1 and bone morphogenetic protein-2 at 21 days in demineralised dentine matrix group. Cells on DDM group showed signs of mineralisation. The functionalised scaffolds were able to stimulate osteogenic differentiation of human bone marrow stromal cells.

5.
Eur J Med Genet ; 62(8): 103647, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31026593

RESUMO

Preimplantation genetic testing (PGT) has been successfully applied to reduce the risk of miscarriage, improve IVF success rates, and prevent inheritance of monogenic disease and unbalanced translocations. The present study provides the first method capable of simultaneous testing of aneuploidy (PGT-A), structural rearrangements (PGT-SR), and monogenic (PGT-M) disorders using a single platform. Using positive controls to establish performance characteristics, accuracies of 97 to >99% for each type of testing were observed. In addition, this study expands PGT to include predicting the risk of polygenic disorders (PGT-P) for the first time. Performance was established for two common diseases, hypothyroidism and type 1 diabetes, based upon availability of positive control samples from commercially available repositories. Data from the UK Biobank, eMERGE, and T1DBASE were used to establish and validate SNP-based predictors of each disease (7,311 SNPs for hypothyroidism and 82 for type 1 diabetes). Area under the curve of disease status prediction from genotypes alone were 0.71 for hypothyroidism and 0.68 for type 1 diabetes. The availability of expanded PGT to evaluate the risk of polygenic disorders in the preimplantation embryo has the potential to lower the prevalence of common genetic disease in humans.


Assuntos
Aborto Espontâneo/genética , Cromossomos/genética , Doenças Genéticas Inatas/genética , Diagnóstico Pré-Implantação , Aborto Espontâneo/fisiopatologia , Aneuploidia , Biópsia , Blastocisto/metabolismo , Feminino , Doenças Genéticas Inatas/patologia , Variação Estrutural do Genoma/genética , Genótipo , Humanos , Cariótipo , Herança Multifatorial/genética , Gravidez
6.
Genetics ; 210(2): 477-497, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30150289

RESUMO

We construct genomic predictors for heritable but extremely complex human quantitative traits (height, heel bone density, and educational attainment) using modern methods in high dimensional statistics (i.e., machine learning). The constructed predictors explain, respectively, ∼40, 20, and 9% of total variance for the three traits, in data not used for training. For example, predicted heights correlate ∼0.65 with actual height; actual heights of most individuals in validation samples are within a few centimeters of the prediction. The proportion of variance explained for height is comparable to the estimated common SNP heritability from genome-wide complex trait analysis (GCTA), and seems to be close to its asymptotic value (i.e., as sample size goes to infinity), suggesting that we have captured most of the heritability for SNPs. Thus, our results close the gap between prediction R-squared and common SNP heritability. The ∼20k activated SNPs in our height predictor reveal the genetic architecture of human height, at least for common variants. Our primary dataset is the UK Biobank cohort, comprised of almost 500k individual genotypes with multiple phenotypes. We also use other datasets and SNPs found in earlier genome-wide association studies (GWAS) for out-of-sample validation of our results.


Assuntos
Estatura/genética , Modelos Genéticos , Genoma Humano , Humanos , Herança Multifatorial , Polimorfismo de Nucleotídeo Único , Característica Quantitativa Herdável
7.
Tissue Eng Part A ; 24(13-14): 1057-1065, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29316874

RESUMO

Current dental restorations have short longevity, and consequently, there is a need for novel tissue engineering strategies that aim to regenerate the dentin-pulp complex. Dentin matrix contains a myriad of bioactive growth factors and extracellular matrix proteins associated with the recruitment, proliferation, and differentiation of dental pulp progenitor cells. In this study, we show that demineralized dentin matrix (DDM), from noncarious dentine, can be encapsulated into liposomes for delivery to dental tissue to promote regeneration. Liposomes were formulated to encapsulate 0-100 µg/mL DDM, lysed with Triton X, and used in vascular endothelial growth factor (VEGF) and transforming growth factor-ß1 (TGF-ß1) enzyme-linked immunosorbent assays to quantify release. The encapsulation efficiencies were calculated to be 25.9% and 28.8% (VEGF/TGF-ß1) for 50 µg/mL DDM liposomes and 39% and 146.7% (VEGF/TGF-ß1) for 100 µg/mL DDM liposomes. All liposome formulations had no cytotoxic effects on a dental pulp stem cell (DPSC) clone, as shown by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltertrazolium bromide), Caspase 3/7 assays, and cell counts. The ability of the liposomes to stimulate DPSC chemotactic recruitment was tested by Boyden chamber chemotaxis assays. Unloaded liposomes alone stimulated significant progenitor cell recruitment, while DDM-loaded liposomes further promoted chemotactic recruitment in a dose-dependent manner. DDM liposomes promoted the upregulation of "osteodentin" markers osteocalcin and RUNX2 (Runt-related transcription factor 2) in DPSCs after 9 days of treatment, determined by real-time quantitative PCR. Furthermore, Alizarin Red S staining showed that unloaded liposomes alone induced biomineralization of DPSCs, and DDM liposomes further increased the amount of mineralization observed. DDM liposomes were more effective than free DDM (10 µg/mL) at activating recruitment and osteogenic differentiation of DPSC, which are key events in the endogenous repair of the dentin-pulp complex. The study has highlighted the therapeutic potential of bioactive DDM liposomes in activating dental tissue repair in vitro, suggesting that liposomal delivery from biomaterials could be a valuable tool for reparative dentistry and hard-tissue engineering applications.


Assuntos
Polpa Dentária/fisiologia , Dentina/química , Lipossomos/química , Regeneração , Biomarcadores/metabolismo , Morte Celular , Diferenciação Celular , Quimiotaxia , Polpa Dentária/citologia , Humanos , Osteogênese , Células-Tronco/citologia
8.
Phys Rev Lett ; 116(17): 171601, 2016 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-27176513

RESUMO

We show that there exists an infinite tower of fermionic symmetries in pure d=4, N=1 supergravity on an asymptotically flat background. The Ward identities associated with these symmetries are equivalent to the soft limit of the gravitino and to the statement of supersymmetry at every angle. Additionally, we show that these charges commute into charges associated with the (unextended) Bondi-Metzner-Sachs (BMS) group, providing a supersymmetrization of the BMS translations.

9.
Phys Rev Lett ; 113(23): 231604, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25526115

RESUMO

Using relative entropy, we derive bounds on the time rate of change of geometric entanglement entropy for any relativistic quantum field theory in any dimension. The bounds apply to both mixed and pure states, and may be extended to curved space. We illustrate the bounds in a few examples and comment on potential applications and future extensions.

10.
Proteomics ; 6(16): 4466-74, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16897685

RESUMO

Peptide dimethylation with isotopically coded formaldehydes was evaluated as a potential alternative to techniques such as the iTRAQ method for comparative proteomics. The isotopic labeling strategy and custom-designed protein quantitation software were tested using protein standards and then applied to measure proteins levels associated with Alzheimer's disease (AD). The method provided high accuracy (10% error), precision (14% RSD) and coverage (70%) when applied to the analysis of a standard solution of BSA by LC-MS/MS. The technique was then applied to measure protein abundance levels in brain tissue afflicted with AD relative to normal brain tissue. 2-D LC-MS analysis identified 548 unique proteins (p<0.05). Of these, 349 were quantified with two or more peptides that met the statistical criteria used in this study. Several classes of proteins exhibited significant changes in abundance. For example, elevated levels of antioxidant proteins and decreased levels of mitochondrial electron transport proteins were observed. The results demonstrate the utility of the labeling method for high-throughput quantitative analysis.


Assuntos
Doença de Alzheimer/metabolismo , Aminas/química , Proteômica , Software , Sequência de Aminoácidos , Animais , Encéfalo/metabolismo , Bovinos , Eletroforese em Gel Bidimensional , Humanos , Marcação por Isótopo , Dados de Sequência Molecular , Mapeamento de Peptídeos , Soroalbumina Bovina/análise , Espectrometria de Massas por Ionização por Electrospray
11.
Int J Radiat Oncol Biol Phys ; 62(2): 373-8, 2005 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-15890577

RESUMO

PURPOSE: To evaluate the daily setup variation and the anatomic movement of the heart and lungs during breast irradiation with tangential photon beams, as measured with an electronic portal imaging device. METHODS AND MATERIALS: Analysis of 1,709 portal images determined changes in the radiation field during a treatment course in 8 patients. Values obtained for every image included central lung distance (CLD) and area of lung and heart within the irradiated field. The data from these measurements were used to evaluate variation from setup between treatment days and motion due to respiration and/or patient movement during treatment delivery. RESULTS: The effect of respiratory motion and movement during treatment was minimal: the maximum range in CLD for any patient on any day was 0.25 cm. The variation caused by day-to-day setup variation was greater, with CLD values for patients ranging from 0.59 cm to 2.94 cm. Similar findings were found for heart and lung areas. CONCLUSIONS: There is very little change in CLD and corresponding lung and heart area during individual radiation treatment fractions in breast tangential fields, compared with a relatively greater amount of variation that occurs between days.


Assuntos
Neoplasias da Mama/radioterapia , Coração , Pulmão , Movimento , Sistemas Automatizados de Assistência Junto ao Leito , Adulto , Idoso , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/cirurgia , Feminino , Humanos , Mastectomia Segmentar , Pessoa de Meia-Idade , Radiografia , Dosagem Radioterapêutica , Respiração , Pesos e Medidas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA