Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Transl Psychiatry ; 14(1): 428, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39384764

RESUMO

Structural and functional changes of the brain are assumed to contribute to excessive cocaine intake, craving, and relapse in cocaine use disorder (CUD). Epigenetic and transcriptional changes were hypothesized as a molecular basis for CUD-associated brain alterations. Here we performed a multi-omics study of CUD by integrating epigenome-wide methylomic (N = 42) and transcriptomic (N = 25) data from the same individuals using postmortem brain tissue of Brodmann Area 9 (BA9). Of the N = 1 057 differentially expressed genes (p < 0.05), one gene, ZFAND2A, was significantly upregulated in CUD at transcriptome-wide significance (q < 0.05). Differential alternative splicing (AS) analysis revealed N = 98 alternatively spliced transcripts enriched in axon and dendrite extension pathways. Strong convergent overlap in CUD-associated expression deregulation was found between our BA9 cohort and independent replication datasets. Epigenomic, transcriptomic, and AS changes in BA9 converged at two genes, ZBTB4 and INPP5E. In pathway analyses, synaptic signaling, neuron morphogenesis, and fatty acid metabolism emerged as the most prominently deregulated biological processes. Drug repositioning analysis revealed glucocorticoid receptor targeting drugs as most potent in reversing the CUD expression profile. Our study highlights the value of multi-omics approaches for an in-depth molecular characterization and provides insights into the relationship between CUD-associated epigenomic and transcriptomic signatures in the human prefrontal cortex.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Metilação de DNA , Transcriptoma , Humanos , Transtornos Relacionados ao Uso de Cocaína/genética , Masculino , Feminino , Adulto , Perfilação da Expressão Gênica , Epigênese Genética , Pessoa de Meia-Idade , Epigenômica , Encéfalo/metabolismo , Córtex Pré-Frontal/metabolismo , Multiômica
2.
Res Sq ; 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39184101

RESUMO

Structural and functional alterations in the brain's reward circuitry are present in cocaine use disorder (CocUD), but their molecular underpinnings remain unclear. To investigate these mechanisms, we performed single-nuclei multiome profiling on postmortem caudate nucleus tissue from six individuals with CocUD and eight controls. We profiled 31,178 nuclei, identifying 13 cell types including D1- and D2-medium spiny neurons (MSNs) and glial cells. We observed 1,383 differentially regulated genes and 10,235 differentially accessible peaks, with alterations in MSNs and astrocytes related to neurotransmitter activity and synapse organization. Gene regulatory network analysis identified the transcription factor ZEB1 as exhibiting distinct CocUD-specific subclusters, activating downstream expression of ion- and calcium-channels in MSNs. Further, PDE10A emerged as a potential drug target, showing conserved effects in a rat model. This study highlights cell type-specific molecular alterations in CocUD and provides targets for further investigation, demonstrating the value of multi-omics approaches in addiction research.

3.
medRxiv ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39072012

RESUMO

Background: The occurrence of post-traumatic stress disorder (PTSD) following a traumatic event is associated with biological differences that can represent the susceptibility to PTSD, the impact of trauma, or the sequelae of PTSD itself. These effects include differences in DNA methylation (DNAm), an important form of epigenetic gene regulation, at multiple CpG loci across the genome. Moreover, these effects can be shared or specific to both central and peripheral tissues. Here, we aim to identify blood DNAm differences associated with PTSD and characterize the underlying biological mechanisms by examining the extent to which they mirror associations across multiple brain regions. Methods: As the Psychiatric Genomics Consortium (PGC) PTSD Epigenetics Workgroup, we conducted the largest cross-sectional meta-analysis of epigenome-wide association studies (EWASs) of PTSD to date, involving 5077 participants (2156 PTSD cases and 2921 trauma-exposed controls) from 23 civilian and military studies. PTSD diagnosis assessments were harmonized following the standardized guidelines established by the PGC-PTSD Workgroup. DNAm was assayed from blood using either Illumina HumanMethylation450 or MethylationEPIC (850K) BeadChips. A common QC pipeline was applied. Within each cohort, DNA methylation was regressed on PTSD, sex (if applicable), age, blood cell proportions, and ancestry. An inverse variance-weighted meta-analysis was performed. We conducted replication analyses in tissue from multiple brain regions, neuronal nuclei, and a cellular model of prolonged stress. Results: We identified 11 CpG sites associated with PTSD in the overall meta-analysis (1.44e-09 < p < 5.30e-08), as well as 14 associated in analyses of specific strata (military vs civilian cohort, sex, and ancestry), including CpGs in AHRR and CDC42BPB. Many of these loci exhibit blood-brain correlation in methylation levels and cross-tissue associations with PTSD in multiple brain regions. Methylation at most CpGs correlated with their annotated gene expression levels. Conclusions: This study identifies 11 PTSD-associated CpGs, also leverages data from postmortem brain samples, GWAS, and genome-wide expression data to interpret the biology underlying these associations and prioritize genes whose regulation differs in those with PTSD.

4.
Vet World ; 17(6): 1281-1290, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39077461

RESUMO

Background and Aim: With the emergence of severe acute respiratory syndrome-related coronavirus (SARS-CoV-2), antiviral drug development has gained increased significance due to the high incidence and potentially severe complications of the resulting coronavirus infection. Heterocycle compounds, acting as antimetabolites of DNA and RNA monomers, rank among the most effective antiviral drugs. These compounds' antiviral effects on various SARS-CoV-2 isolates, as found in existing data collections, form the basis for further research. The aim of this study was to examine the possible antiviral effect of some originally synthesized heterocyclic compounds. Materials and Methods: The main methods were cell culturing, cytotoxicity assay, qRT-PCR assay, tissue and blood cells analysis, and micro-computed tomography (micro-CT) imaging. Results: In both in vitro and in vivo conditions, the elimination of SARS-Cov-2 occurred significantly earlier after administration of the compounds compared to the control group. In hamsters, the primary symptoms of coronavirus disease disappeared following administration of heterocycle compounds. Conclusion: Using delta and omicron strains of the SARS-CoV-2 virus, newly created heterocycle compound analogs dramatically reduced SARS-CoV-2 multiplication, resulting in a drop in viral RNA load in the supernatant under in vitro conditions. Improvements in pathological manifestations in the blood, bone marrow, and internal organs of hamsters demonstrated that heterocycle compounds inhibited SARS-CoV-2 replication both in vitro and in vivo.

5.
Viruses ; 14(5)2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35632815

RESUMO

The sequencing of SARS-CoV-2 provides essential information on viral evolution, transmission, and epidemiology. In this paper, we performed the whole-genome sequencing of SARS-CoV-2 using nanopore and Illumina sequencing to describe the circulation of the virus lineages in Armenia. The analysis of 145 full genomes identified six clades (19A, 20A, 20B, 20I, 21J, and 21K) and considerable intra-clade PANGO lineage diversity. Phylodynamic and transmission analysis allowed to attribute specific clades as well as infer their importation routes. Thus, the first two waves of positive case increase were caused by the 20B clade, the third peak caused by the 20I (Alpha), while the last two peaks were caused by the 21J (Delta) and 21K (Omicron) variants. The functional analyses of mutations in sequences largely affected epitopes associated with protective HLA loci and did not cause the loss of the signal in PCR tests targeting ORF1ab and N genes as confirmed by RT-PCR. We also compared the performance of nanopore and Illumina short-read sequencing and showed the utility of nanopore sequencing as an efficient and affordable alternative for large-scale molecular epidemiology research. Thus, our paper describes new data on the genomic diversity of SARS-CoV-2 variants in Armenia in the global context of the virus molecular genomic surveillance.


Assuntos
COVID-19 , SARS-CoV-2 , Armênia/epidemiologia , COVID-19/epidemiologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , SARS-CoV-2/genética
6.
Curr Issues Mol Biol ; 45(1): 249-267, 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36661505

RESUMO

At the end of 2019, an outbreak of a new severe acute respiratory syndrome caused by a coronavirus occurred in Wuhan, China, after which the virus spread around the world. Here, we have described the adaptive capacity and pathogenesis of the SARS-CoV-2 Delta variant, which is widespread in Armenia, in vitro and vivo on Syrian hamsters. We have studied the changes in the SARS-CoV-2genome using viral RNA sequencing during virus adaptation in vitro and in vivo. Our findings revealed that SARS-CoV-2 in Syrian hamsters causes a short-term pulmonary form of the disease, the first symptoms appear within 48 h after infection, reach 5-7 days after infection, and begin to disappear by 7-9 days after infection. The virus induces pathogenesis in the blood and bone marrow, which generally corresponds to the manifestation of the inflammatory process. The pulmonary form of the disease passes faster than changes in blood cells and bone marrow. Our data show that hamster organs do not undergo significant pathological changes in the Delta variant of SARS-CoV-2 infection.

7.
J Virol Methods ; 295: 114199, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34091213

RESUMO

COVID-19 pandemic severely impacted the healthcare and economy on a global scale. It is widely recognized that mass testing is an efficient way to contain the spread of SARS-CoV-2 infection as well as aid in the development of informed policies for disease management. However, the current COVID-19 worldwide infection rates increased the demand for rapid and reliable screening of infection. We compared the performance of qRT-PCR in direct heat-inactivated (H), heat-inactivated and pelleted (HC) samples against RNA in a group of 74 subjects (44 positive and 30 negative). Then we compared the sensitivity of HC in a larger group of 196 COVID-19 positive samples. Our study suggests that HC samples show higher accuracy for SARS-CoV-2 detection PCR assay compared to direct H (89 % vs 83 % of the detection in RNA). The sensitivity of detection using direct samples varied depending on the sample transport and storage media as well as the viral loads (as measured by qRT-PCR Ct levels). Altogether, all the data suggest that purified RNA provides more accurate results, however, direct sample testing with qRT-PCR may help to significantly increase testing capacity. Switching to the direct sample testing is justified if the number of tests is doubled at least.


Assuntos
Teste de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , Programas de Rastreamento/métodos , SARS-CoV-2/isolamento & purificação , Armênia/epidemiologia , COVID-19/epidemiologia , COVID-19/virologia , Humanos , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2/genética , Sensibilidade e Especificidade , Manejo de Espécimes , Carga Viral , Inativação de Vírus
8.
J Psychiatr Res ; 111: 83-88, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30685566

RESUMO

Telomeres are protective fragments on chromosome ends involved in maintaining genome stability, preventing chromosomal fusions, regulation of cell division. It was shown that telomere attrition rate is accelerated in age-related diseases, as well as in response to physiological and psychosocial stress. The aim of this study was to evaluate relative leukocyte telomere length (LTL) in patients with post traumatic stress disorder (PTSD), as well as to investigate association of functional SNPs of telomerase TERC and TERT genes with LTL and PTSD. The relative LTL was measured by multiplex quantitative PCR method; genotyping of TERC rs12696304, TERT rs7726159 and rs2736100 was performed by PCR with sequence specific primers. Comparison of LTL in diseased and healthy subjects showed that PTSD patients had shorter average LTL than controls. Also, the frequency and the carriage rate of the TERT rs2736100*T allele was higher in PTSD patients compared to controls. Overall our results are in line with previous research in different populations. Furthermore, we have demonstrated that rs2736100 of TERT gene was significantly associated with PTSD and the minor allele of this polymorphism may be considered as a risk factor for PTSD in the Armenian population.


Assuntos
Leucócitos/metabolismo , RNA/genética , Transtornos de Estresse Pós-Traumáticos/sangue , Transtornos de Estresse Pós-Traumáticos/genética , Telomerase/genética , Encurtamento do Telômero/genética , Adulto , Idoso , Armênia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Risco , Transtornos de Estresse Pós-Traumáticos/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA