Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
EMBO Mol Med ; 16(7): 1533-1559, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38926633

RESUMO

Triple-negative breast cancer (TNBC) has limited therapeutic options, is highly metastatic and characterized by early recurrence. Lipid metabolism is generally deregulated in TNBC and might reveal vulnerabilities to be targeted or used as biomarkers with clinical value. Ferroptosis is a type of cell death caused by iron-dependent lipid peroxidation which is facilitated by the presence of polyunsaturated fatty acids (PUFA). Here we identify fatty acid desaturases 1 and 2 (FADS1/2), which are responsible for PUFA biosynthesis, to be highly expressed in a subset of TNBC with a poorer prognosis. Lipidomic analysis, coupled with functional metabolic assays, showed that FADS1/2 high-expressing TNBC are susceptible to ferroptosis-inducing agents and that targeting FADS1/2 by both genetic interference and pharmacological approach renders those tumors ferroptosis-resistant while unbalancing PUFA/MUFA ratio by the supplementation of exogenous PUFA sensitizes resistant tumors to ferroptosis induction. Last, inhibiting lipid droplet (LD) formation and turnover suppresses the buffering capacity of LD and potentiates iron-dependent cell death. These findings have been validated in vitro and in vivo in mouse- and human-derived clinically relevant models and in a retrospective cohort of TNBC patients.


Assuntos
Dessaturase de Ácido Graxo Delta-5 , Ácidos Graxos Dessaturases , Ferroptose , Metabolismo dos Lipídeos , Neoplasias de Mama Triplo Negativas , Animais , Feminino , Humanos , Camundongos , Linhagem Celular Tumoral , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Dessaturases/genética , Ferroptose/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética
2.
Cancer Discov ; 14(6): 953-964, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38501975

RESUMO

Pediatric cancers are rare diseases, and children without known germline predisposing conditions who develop a second malignancy during developmental ages are extremely rare. We present four such clinical cases and, through whole-genome and error-correcting ultra-deep duplex sequencing of tumor and normal samples, we explored the origin of the second malignancy in four children, uncovering different routes of development. The exposure to cytotoxic therapies was linked to the emergence of a secondary acute myeloid leukemia. A common somatic mutation acquired early during embryonic development was the driver of two solid malignancies in another child. In two cases, the two tumors developed from completely independent clones diverging during embryogenesis. Importantly, we demonstrate that platinum-based therapies contributed at least one order of magnitude more mutations per day of exposure than aging to normal tissues in these children. SIGNIFICANCE: Using whole-genome and error-correcting ultra-deep duplex sequencing, we uncover different origins for second neoplasms in four children. We also uncover the presence of platinum-related mutations across 10 normal tissues of exposed individuals, highlighting the impact that the use of cytotoxic therapies may have on cancer survivors. See related commentary by Pacyna and Nangalia, p. 900. This article is featured in Selected Articles from This Issue, p. 897.


Assuntos
Mutação , Segunda Neoplasia Primária , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Antineoplásicos/uso terapêutico , Sequenciamento de Nucleotídeos em Larga Escala , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Segunda Neoplasia Primária/genética , Sequenciamento Completo do Genoma
3.
Nat Cell Biol ; 25(12): 1833-1847, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37945904

RESUMO

MAF amplification increases the risk of breast cancer (BCa) metastasis through mechanisms that are still poorly understood yet have important clinical implications. Oestrogen-receptor-positive (ER+) BCa requires oestrogen for both growth and metastasis, albeit by ill-known mechanisms. Here we integrate proteomics, transcriptomics, epigenomics, chromatin accessibility and functional assays from human and syngeneic mouse BCa models to show that MAF directly interacts with oestrogen receptor alpha (ERα), thereby promoting a unique chromatin landscape that favours metastatic spread. We identify metastasis-promoting genes that are de novo licensed following oestrogen exposure in a MAF-dependent manner. The histone demethylase KDM1A is key to the epigenomic remodelling that facilitates the expression of the pro-metastatic MAF/oestrogen-driven gene expression program, and loss of KDM1A activity prevents this metastasis. We have thus determined that the molecular basis underlying MAF/oestrogen-mediated metastasis requires genetic, epigenetic and hormone signals from the systemic environment, which influence the ability of BCa cells to metastasize.


Assuntos
Neoplasias da Mama , Epigênese Genética , Receptor alfa de Estrogênio , Amplificação de Genes , Proteínas Proto-Oncogênicas c-maf , Animais , Feminino , Humanos , Camundongos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Cromatina , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Estrogênios , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Proteínas Proto-Oncogênicas c-maf/genética
4.
Cancer Res ; 82(16): 2904-2917, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35749591

RESUMO

Immune-checkpoint blockade (ICB) promotes antitumor immune responses and can result in durable patient benefit. However, response rates in breast cancer patients remain modest, stimulating efforts to discover novel treatment options. Cancer-associated fibroblasts (CAF) represent a major component of the breast tumor microenvironment and have known immunosuppressive functions in addition to their well-established roles in directly promoting tumor growth and metastasis. Here we utilized paired syngeneic mouse mammary carcinoma models to show that CAF abundance is associated with insensitivity to combination αCTLA4 and αPD-L1 ICB. CAF-rich tumors exhibited an immunologically cold tumor microenvironment, with transcriptomic, flow cytometric, and quantitative histopathologic analyses demonstrating a relationship between CAF density and a CD8+ T-cell-excluded tumor phenotype. The CAF receptor Endo180 (Mrc2) is predominantly expressed on myofibroblastic CAFs, and its genetic deletion depleted a subset of αSMA-expressing CAFs and impaired tumor progression in vivo. The addition of wild-type, but not Endo180-deficient, CAFs in coimplantation studies restricted CD8+ T-cell intratumoral infiltration, and tumors in Endo180 knockout mice exhibited increased CD8+ T-cell infiltration and enhanced sensitivity to ICB compared with tumors in wild-type mice. Clinically, in a trial of melanoma patients, high MRC2 mRNA levels in tumors were associated with a poor response to αPD-1 therapy, highlighting the potential benefits of therapeutically targeting a specific CAF subpopulation in breast and other CAF-rich cancers to improve clinical responses to immunotherapy. SIGNIFICANCE: Paired syngeneic models help unravel the interplay between CAF and tumor immune evasion, highlighting the benefits of targeting fibroblast subpopulations to improve clinical responses to immunotherapy.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias , Animais , Linfócitos T CD8-Positivos , Linhagem Celular Tumoral , Inibidores de Checkpoint Imunológico , Camundongos , Microambiente Tumoral
5.
Cell Stem Cell ; 28(10): 1790-1804.e8, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34010627

RESUMO

The role of heterochromatin in cell fate specification during development is unclear. We demonstrate that loss of the lysine 9 of histone H3 (H3K9) methyltransferase G9a in the mammary epithelium results in de novo chromatin opening, aberrant formation of the mammary ductal tree, impaired stem cell potential, disrupted intraductal polarity, and loss of tissue function. G9a loss derepresses long terminal repeat (LTR) retroviral sequences (predominantly the ERVK family). Transcriptionally activated endogenous retroviruses generate double-stranded DNA (dsDNA) that triggers an antiviral innate immune response, and knockdown of the cytosolic dsDNA sensor Aim2 in G9a knockout (G9acKO) mammary epithelium rescues mammary ductal invasion. Mammary stem cell transplantation into immunocompromised or G9acKO-conditioned hosts shows partial dependence of the G9acKO mammary morphological defects on the inflammatory milieu of the host mammary fat pad. Thus, altering the chromatin accessibility of retroviral elements disrupts mammary gland development and stem cell activity through both cell-autonomous and non-autonomous mechanisms.


Assuntos
Retrovirus Endógenos , Histona-Lisina N-Metiltransferase , Glândulas Mamárias Animais/crescimento & desenvolvimento , Tecido Adiposo/crescimento & desenvolvimento , Tecido Adiposo/imunologia , Animais , Retrovirus Endógenos/genética , Retrovirus Endógenos/metabolismo , Feminino , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Imunidade , Glândulas Mamárias Animais/imunologia
6.
Cell Stem Cell ; 28(4): 600-602, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33798421

RESUMO

COVID-19 has unfortunately halted lab work, conferences, and in-person networking, which is especially detrimental to researchers just starting their labs. Through social media and our reviewer networks, we met some early-career stem cell investigators impacted by the closures. Here, they introduce themselves and their research to our readers.


Assuntos
Pesquisadores , Células-Tronco , COVID-19 , Humanos
7.
Nat Cell Biol ; 20(12): 1400-1409, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30455462

RESUMO

Mutations in, and the altered expression of, epigenetic modifiers are pervasive in human tumours, making epigenetic factors attractive antitumour targets. The open-versus-closed chromatin state within the cells-of-origin of cancer correlates with the uneven distribution of mutations. However, the long-term effect of targeting epigenetic modifiers on mutability in patients with cancer is unclear. Here, we increased chromatin accessibility by deleting the histone H3 lysine 9 (H3K9) methyltransferase G9a in murine epidermis and show that this does not alter the single nucleotide variant burden or global genomic distribution in chemical mutagen-induced squamous tumours. G9a-depleted tumours develop after a prolonged latency compared with their wild-type counterparts, but are more aggressive and have an expanded cancer progenitor pool, pronounced genomic instability and frequent loss-of-function p53 mutations. Thus, we call for caution when assessing long-term therapeutic benefits of chromatin modifier inhibitors, which may promote more aggressive disease.


Assuntos
Cromatina/genética , Instabilidade Genômica , Histona-Lisina N-Metiltransferase/genética , Mutação , Neoplasias Cutâneas/genética , Animais , Linhagem Celular , Cromatina/metabolismo , Epiderme/metabolismo , Epiderme/patologia , Epigênese Genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Invasividade Neoplásica , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
8.
Nat Commun ; 9(1): 1420, 2018 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-29650963

RESUMO

The chronic skin inflammation psoriasis is crucially dependent on the IL-23/IL-17 cytokine axis. Although IL-23 is expressed by psoriatic keratinocytes and immune cells, only the immune cell-derived IL-23 is believed to be disease relevant. Here we use a genetic mouse model to show that keratinocyte-produced IL-23 is sufficient to cause a chronic skin inflammation with an IL-17 profile. Furthermore, we reveal a cell-autonomous nuclear function for the actin polymerizing molecule N-WASP, which controls IL-23 expression in keratinocytes by regulating the degradation of the histone methyltransferases G9a and GLP, and H3K9 dimethylation of the IL-23 promoter. This mechanism mediates the induction of IL-23 by TNF, a known inducer of IL-23 in psoriasis. Finally, in keratinocytes of psoriatic lesions a decrease in H3K9 dimethylation correlates with increased IL-23 expression, suggesting relevance for disease. Taken together, our data describe a molecular pathway where epigenetic regulation of keratinocytes can contribute to chronic skin inflammation.


Assuntos
Epigênese Genética , Histona-Lisina N-Metiltransferase/genética , Subunidade p19 da Interleucina-23/genética , Psoríase/genética , Pele/metabolismo , Proteína Neuronal da Síndrome de Wiskott-Aldrich/genética , Adulto , Animais , Modelos Animais de Doenças , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Histona-Lisina N-Metiltransferase/deficiência , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Inflamação , Interleucina-17/genética , Interleucina-17/metabolismo , Subunidade p19 da Interleucina-23/deficiência , Queratinócitos/metabolismo , Queratinócitos/patologia , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Cultura Primária de Células , Regiões Promotoras Genéticas , Psoríase/metabolismo , Psoríase/patologia , Transdução de Sinais , Pele/patologia , Proteína Neuronal da Síndrome de Wiskott-Aldrich/deficiência
9.
Elife ; 62017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28425913

RESUMO

The DNA methyltransferase Dnmt3a suppresses tumorigenesis in models of leukemia and lung cancer. Conversely, deregulation of Dnmt3b is thought to generally promote tumorigenesis. However, the role of Dnmt3a and Dnmt3b in many types of cancer remains undefined. Here, we show that Dnmt3a and Dnmt3b are dispensable for homeostasis of the murine epidermis. However, loss of Dnmt3a-but not Dnmt3b-increases the number of carcinogen-induced squamous tumors, without affecting tumor progression. Only upon combined deletion of Dnmt3a and Dnmt3b, squamous carcinomas become more aggressive and metastatic. Mechanistically, Dnmt3a promotes the expression of epidermal differentiation genes by interacting with their enhancers and inhibits the expression of lipid metabolism genes, including PPAR-γ, by directly methylating their promoters. Importantly, inhibition of PPAR-γ partially prevents the increase in tumorigenesis upon deletion of Dnmt3a. Altogether, we demonstrate that Dnmt3a and Dnmt3b protect the epidermis from tumorigenesis and that squamous carcinomas are sensitive to inhibition of PPAR-γ.


Assuntos
Carcinoma de Células Escamosas/fisiopatologia , DNA (Citosina-5-)-Metiltransferases/metabolismo , Epiderme/fisiologia , Homeostase , PPAR gama/metabolismo , Animais , DNA Metiltransferase 3A , Camundongos , DNA Metiltransferase 3B
10.
Nature ; 541(7635): 41-45, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-27974793

RESUMO

The fact that the identity of the cells that initiate metastasis in most human cancers is unknown hampers the development of antimetastatic therapies. Here we describe a subpopulation of CD44bright cells in human oral carcinomas that do not overexpress mesenchymal genes, are slow-cycling, express high levels of the fatty acid receptor CD36 and lipid metabolism genes, and are unique in their ability to initiate metastasis. Palmitic acid or a high-fat diet specifically boosts the metastatic potential of CD36+ metastasis-initiating cells in a CD36-dependent manner. The use of neutralizing antibodies to block CD36 causes almost complete inhibition of metastasis in immunodeficient or immunocompetent orthotopic mouse models of human oral cancer, with no side effects. Clinically, the presence of CD36+ metastasis-initiating cells correlates with a poor prognosis for numerous types of carcinomas, and inhibition of CD36 also impairs metastasis, at least in human melanoma- and breast cancer-derived tumours. Together, our results indicate that metastasis-initiating cells particularly rely on dietary lipids to promote metastasis.


Assuntos
Anticorpos Neutralizantes/farmacologia , Antígenos CD36/antagonistas & inibidores , Neoplasias Bucais/patologia , Metástase Neoplásica/patologia , Metástase Neoplásica/prevenção & controle , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/uso terapêutico , Antígenos CD36/genética , Antígenos CD36/imunologia , Antígenos CD36/metabolismo , Proliferação de Células , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Receptores de Hialuronatos/metabolismo , Metabolismo dos Lipídeos/genética , Metástase Linfática/genética , Metástase Linfática/patologia , Masculino , Camundongos , Neoplasias Bucais/diagnóstico , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/metabolismo , Metástase Neoplásica/tratamento farmacológico , Metástase Neoplásica/genética , Células-Tronco Neoplásicas/metabolismo , Ácido Palmítico/administração & dosagem , Ácido Palmítico/metabolismo , Ácido Palmítico/farmacologia , Penetrância , Prognóstico , Transcriptoma , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Cell Stem Cell ; 19(4): 491-501, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27476967

RESUMO

The genome-wide localization and function of endogenous Dnmt3a and Dnmt3b in adult stem cells are unknown. Here, we show that in human epidermal stem cells, the two proteins bind in a histone H3K36me3-dependent manner to the most active enhancers and are required to produce their associated enhancer RNAs. Both proteins prefer super-enhancers associated to genes that either define the ectodermal lineage or establish the stem cell and differentiated states. However, Dnmt3a and Dnmt3b differ in their mechanisms of enhancer regulation: Dnmt3a associates with p63 to maintain high levels of DNA hydroxymethylation at the center of enhancers in a Tet2-dependent manner, whereas Dnmt3b promotes DNA methylation along the body of the enhancer. Depletion of either protein inactivates their target enhancers and profoundly affects epidermal stem cell function. Altogether, we reveal novel functions for Dnmt3a and Dnmt3b at enhancers that could contribute to their roles in disease and tumorigenesis.


Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , Elementos Facilitadores Genéticos/genética , Células Epidérmicas , Homeostase , Células-Tronco/citologia , Células-Tronco/metabolismo , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Sequência de Bases , Diferenciação Celular , Metilação de DNA/genética , DNA Metiltransferase 3A , Proteínas de Ligação a DNA/metabolismo , Dioxigenases , Histonas/metabolismo , Humanos , Queratinócitos/citologia , Lisina/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , DNA Metiltransferase 3B
12.
Nat Rev Mol Cell Biol ; 17(10): 643-58, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27405257

RESUMO

Mammalian embryonic development is a tightly regulated process that, from a single zygote, produces a large number of cell types with hugely divergent functions. Distinct cellular differentiation programmes are facilitated by tight transcriptional and epigenetic regulation. However, the contribution of epigenetic regulation to tissue homeostasis after the completion of development is less well understood. In this Review, we explore the effects of epigenetic dysregulation on adult stem cell function. We conclude that, depending on the tissue type and the epigenetic regulator affected, the consequences range from negligible to stem cell malfunction and disruption of tissue homeostasis, which may predispose to diseases such as cancer.


Assuntos
Células-Tronco Adultas/fisiologia , Epigênese Genética , Animais , Diferenciação Celular , Metilação de DNA , Células Epidérmicas , Epiderme/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Glândulas Mamárias Humanas/citologia , Glândulas Mamárias Humanas/fisiologia , Regeneração
13.
Curr Opin Genet Dev ; 36: 8-15, 2016 02.
Artigo em Inglês | MEDLINE | ID: mdl-26874045

RESUMO

Cancer stem cells (CSCs) have been identified in various tumours and are defined by their potential to initiate tumours upon transplantation, self-renew and reconstitute tumour heterogeneity. Modifications of the epigenome can favour tumour initiation by affecting genome integrity, DNA repair and tumour cell plasticity. Importantly, an in-depth understanding of the epigenomic alterations underlying neoplastic transformation may open new avenues for chromatin-targeted cancer treatment, as these epigenetic changes could be inherently more amenable to inhibition and reversal than hard-wired genomic alterations. Here we discuss how CSC function is affected by chromatin state and epigenomic instability.


Assuntos
Cromatina/genética , Epigênese Genética/genética , Neoplasias/genética , Células-Tronco Neoplásicas , Transformação Celular Neoplásica/genética , Reparo do DNA/genética , Humanos
14.
Nat Commun ; 7: 10305, 2016 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-26777421

RESUMO

Stromal fibroblast recruitment to tumours and activation to a cancer-associated fibroblast (CAF) phenotype has been implicated in promoting primary tumour growth and progression to metastatic disease. However, the mechanisms underlying the tumour:fibroblast crosstalk that drive the intertumoural stromal heterogeneity remain poorly understood. Using in vivo models we identify Wnt7a as a key factor secreted exclusively by aggressive breast tumour cells, which induces CAF conversion. Functionally, this results in extracellular matrix remodelling to create a permissive environment for tumour cell invasion and promotion of distant metastasis. Mechanistically, Wnt7a-mediated fibroblast activation is not dependent on classical Wnt signalling. Instead, we demonstrate that Wnt7a potentiates TGFß receptor signalling both in 3D in vitro and in vivo models, thus highlighting the interaction between two of the key signalling pathways in development and disease. Importantly, in clinical breast cancer cohorts, tumour cell Wnt7a expression correlates with a desmoplastic, poor-prognosis stroma and poor patient outcome.


Assuntos
Neoplasias da Mama/metabolismo , Fibroblastos/metabolismo , Proteínas Wnt/metabolismo , Animais , Feminino , Fibroblastos/citologia , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Células NIH 3T3 , Proteínas Wnt/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA