RESUMO
Cisplatin (CP) is a chemotherapy drug widely prescribed to treat various neoplasms. Although fundamental for the therapeutic action of the drug, its cytotoxic mechanisms trigger adverse effects in several tissues, such as the kidney, liver, and heart, which limit its clinical use. In this sense, studies point to an essential role of damage to nuclear and mitochondrial DNA associated with oxidative stress, inflammation, and apoptosis in the pathophysiology of tissue injuries. Due to the limitation of effective preventive and therapeutic measures against CP-induced toxicity, new strategies with potential cytoprotective effects have been studied. Therefore, this article is timely in reviewing the characteristics and main molecular mechanisms common to renal, hepatic, and cardiac toxicity previously described, in addition to addressing the main validated strategies for the current management of these adverse events in clinical practice. We also handle the main promising antioxidant substances recently presented in the literature to encourage the development of new research that consolidates their potential preventive and therapeutic effects against CP-induced cytotoxicity.
Assuntos
Antineoplásicos , Cardiotoxicidade , Doença Hepática Induzida por Substâncias e Drogas , Cisplatino , Humanos , Cisplatino/efeitos adversos , Antineoplásicos/efeitos adversos , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Nefropatias/induzido quimicamente , Nefropatias/prevenção & controle , Animais , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Cardiopatias/induzido quimicamente , Cardiopatias/prevenção & controleRESUMO
In different human carcinoma types, mast cell infiltrate increases with respect to normal tissue and mast cell density correlates with a bad prognosis. To assess the role of mast cells in human thyroid cancer, we compared the density of tryptase-positive mast cells in 96 papillary thyroid carcinomas (PTCs) versus normal thyroid tissue from 14 healthy individuals. Mast cell density was higher in 95% of PTCs (n=91) than in control tissue. Mast cell infiltrate correlated with extrathyroidal extension (P=0.0005) of PTCs. We show that thyroid cancer cell-line-derived soluble factors induce mast cell activation and chemoattraction in vitro. Different mast cell lines (HMC-1 and LAD2) and primary human lung mast cells induced thyroid cancer cell invasive ability, survival and DNA synthesis in vitro. The latter effect was mainly mediated by three mast-cell-derived mediators: histamine, and chemokines CXCL1/GROα and CXCL10/IP10. We show that xenografts of thyroid carcinoma cells (8505-C) could recruit mast cells injected into the tail vein of mice. Co-injection of human mast cells accelerated the growth of thyroid cancer cell (8505-C) xenografts in athymic mice. This effect was mediated by increased tumor vascularization and proliferation, and was reverted by treating mice with sodium cromoglycate (Cromolyn), a specific mast cell inhibitor. In conclusion, our study data suggest that mast cells are recruited into thyroid carcinomas and promote proliferation, survival and invasive ability of cancer cells, thereby contributing to thyroid carcinoma growth and invasiveness.