Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Microbiol Resour Announc ; 13(9): e0036624, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39083694

RESUMO

We report on the complete coding sequence of Rift Valley Fever Virus inadvertently identified through metagenomics in a child with undifferentiated fever at Marigat sub-county hospital, Kenya. On phylogeny, the genome clustered with sequences obtained during the 2017 human outbreak in Uganda and the 2021 cattle outbreak in Kiambu, Kenya.

2.
Malar J ; 22(1): 263, 2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37689681

RESUMO

BACKGROUND: Multiplicity of infection (MOI) is an important measure of Plasmodium falciparum diversity, usually derived from the highly polymorphic genes, such as msp1, msp2 and glurp as well as microsatellites. Conventional methods of deriving MOI lack fine resolution needed to discriminate minor clones. This study used amplicon sequencing (AmpliSeq) of P. falciparum msp1 ï»¿(Pfmsp1) to measure spatial and temporal genetic diversity of P. falciparum. METHODS: 264 P. falciparum positive blood samples collected from areas of differing malaria endemicities between 2010 and 2019 were used. Pfmsp1 gene was amplified and amplicon libraries sequenced on Illumina MiSeq. Sequences were aligned against a reference sequence (NC_004330.2) and clustered to detect fragment length polymorphism and amino acid variations. RESULTS: Children < 5 years had higher parasitaemia (median = 23.5 ± 5 SD, p = 0.03) than the > 5-14 (= 25.3 ± 5 SD), and those > 15 (= 25.1 ± 6 SD). Of the alleles detected, 553 (54.5%) were K1, 250 (24.7%) MAD20 and 211 (20.8%) RO33 that grouped into 19 K1 allelic families (108-270 bp), 14 MAD20 (108-216 bp) and one RO33 (153 bp). AmpliSeq revealed nucleotide polymorphisms in alleles that had similar sizes, thus increasing the K1 to 104, 58 for MAD20 and 14 for RO33. By AmpliSeq, the mean MOI was 4.8 (± 0.78, 95% CI) for the malaria endemic Lake Victoria region, 4.4 (± 1.03, 95% CI) for the epidemic prone Kisii Highland and 3.4 (± 0.62, 95% CI) for the seasonal malaria Semi-Arid region. MOI decreased with age: 4.5 (± 0.76, 95% CI) for children < 5 years, compared to 3.9 (± 0.70, 95% CI) for ages 5 to 14 and 2.7 (± 0.90, 95% CI) for those > 15. Females' MOI (4.2 ± 0.66, 95% CI) was not different from males 4.0 (± 0.61, 95% CI). In all regions, the number of alleles were high in the 2014-2015 period, more so in the Lake Victoria and the seasonal transmission arid regions. CONCLUSION: These findings highlight the added advantages of AmpliSeq in haplotype discrimination and the associated improvement in unravelling complexity of P. falciparum population structure.


Assuntos
Malária Falciparum , Parasitos , Criança , Feminino , Masculino , Animais , Humanos , Pré-Escolar , Plasmodium falciparum/genética , Quênia/epidemiologia , Malária Falciparum/epidemiologia , Alelos , Febre , Proteína 1 de Superfície de Merozoito/genética
3.
Afr J Lab Med ; 11(1): 1737, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35937764

RESUMO

Background: The Basic Science Laboratory (BSL) of the Kenya Medical Research Institute/Walter Reed Project in Kisumu, Kenya addressed mass testing challenges posed by the emergent coronavirus disease 2019 (COVID-19) in an environment of global supply shortages. Before COVID-19, the BSL had adequate resources for disease surveillance and was therefore designated as one of the testing centres for COVID-19. Intervention: By April 2020, the BSL had developed stringent safety procedures for receiving and mass testing potentially infectious nasal specimens. To accommodate increased demand, BSL personnel worked in units: nucleic acid extraction, polymerase chain reaction, and data and quality assurance checks. The BSL adopted procedures for tracking sample integrity and minimising cross-contamination. Lessons learnt: Between May 2020 and January 2022, the BSL tested 63 542 samples, of which 5375 (8.59%) were positive for COVID-19; 1034 genomes were generated by whole genome sequencing and deposited in the Global Initiative on Sharing All Influenza Data database to aid global tracking of viral lineages. At the height of the pandemic (August and November 2020, April and August 2021 and January 2022), the BSL was testing more than 500 samples daily, compared to 150 per month prior to COVID-19. An important lesson from the COVID-19 pandemic was the discovery of untapped resilience within BSL personnel that allowed adaptability when the situation demanded. Strict safety procedures and quality management that are often difficult to maintain became routine. Recommendations: A fundamental lesson to embrace is that there is no 'one-size-fits-all' approach and adaptability is the key to success.

4.
Commun Med (Lond) ; 2: 103, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35982756

RESUMO

Background: Kenya's COVID-19 epidemic was seeded early in March 2020 and did not peak until early August 2020 (wave 1), late-November 2020 (wave 2), mid-April 2021 (wave 3), late August 2021 (wave 4), and mid-January 2022 (wave 5). Methods: Here, we present SARS-CoV-2 lineages associated with the five waves through analysis of 1034 genomes, which included 237 non-variants of concern and 797 variants of concern (VOC) that had increased transmissibility, disease severity or vaccine resistance. Results: In total 40 lineages were identified. The early European lineages (B.1 and B.1.1) were the first to be seeded. The B.1 lineage continued to expand and remained dominant, accounting for 60% (72/120) and 57% (45/79) in waves 1 and 2 respectively. Waves three, four and five respectively were dominated by VOCs that were distributed as follows: Alpha 58.5% (166/285), Delta 92.4% (327/354), Omicron 95.4% (188/197) and Beta at 4.2% (12/284) during wave 3 and 0.3% (1/354) during wave 4. Phylogenetic analysis suggests multiple introductions of variants from outside Kenya, more so during the first, third, fourth and fifth waves, as well as subsequent lineage diversification. Conclusions: The data highlights the importance of genome surveillance in determining circulating variants to aid interpretation of phenotypes such as transmissibility, virulence and/or resistance to therapeutics/vaccines.

5.
Infect Genet Evol ; 90: 104617, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33161179

RESUMO

Kenya experiences a substantial burden of dengue, yet there are very few DENV-2 sequence data available from this country and indeed the entire continent of Africa. We therefore undertook whole genome sequencing and evolutionary analysis of fourteen dengue virus (DENV)-2 strains sampled from Malindi sub-County Hospital during the 2017 DENV-2 outbreak in the Kenyan coast. We further performed an extended East African phylogenetic analysis, which leveraged 26 complete African env genes. Maximum likelihood analysis showed that the 2017 outbreak was due to the Cosmopolitan genotype, indicating that this has been the only confirmed human DENV-2 genotype circulating in Africa to date. Phylogeographic analyses indicated transmission of DENV-2 viruses between East Africa and South/South-West Asia. Time-scaled genealogies show that DENV-2 viruses shows spatial structure at the country level in Kenya, with a time-to-most-common-recent ancestor analysis indicating that these DENV-2 strains were circulating for up to 5.38 years in Kenya before detection in the 2017 Malindi outbreak. Selection pressure analyses indicated sampled Kenyan DENV strains uniquely being under positive selection at 6 sites, predominantly across the non-structural genes, and epitope prediction analyses showed that one of these sites corresponds to a putative predicted MHC-I CD8+ DENV-2 Cosmopolitan virus epitope only evident in a sampled Kenyan virus. Taken together, our findings indicate that the 2017 Malindi DENV-2 outbreak arose from a strain which had circulated for several years in Kenya before recent detection, has experienced diversifying selection pressure, and may contain new putative immunogens relevant to vaccine design. These findings prompt further genomic epidemiology studies in this and other Kenyan locations to further elucidate the transmission dynamics of DENV in this region.


Assuntos
Vírus da Dengue/genética , Dengue/epidemiologia , Evolução Molecular , África Oriental/epidemiologia , Dengue/virologia , Vírus da Dengue/classificação , Humanos , Quênia/epidemiologia , Filogenia , Prevalência , Estudos Soroepidemiológicos
6.
Genome Announc ; 6(15)2018 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-29650565

RESUMO

We report here 10 complete polyprotein-coding sequences of dengue virus type 2 strains isolated from febrile patients who presented at Malindi District Hospital, Kenya, during a recent dengue fever outbreak. Phylogenetically, all the strains belonged to clonal serotype 2 of the Cosmopolitan genotype.

7.
Malar J ; 17(1): 10, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29310651

RESUMO

BACKGROUND: Malaria rapid diagnostic tests (RDTs) are a great achievement in implementation of parasite based diagnosis as recommended by World Health Organization. A major drawback of RDTs is lack of positive controls to validate different batches/lots at the point of care. Dried Plasmodium falciparum-infected samples with the RDT target antigens have been suggested as possible positive control but their utility in resource limited settings is hampered by rapid loss of activity over time. METHODS: This study evaluated the effectiveness of chemical additives to improve long term storage stability of RDT target antigens (HRP2, pLDH and aldolase) in dried P. falciparum-infected samples using parasitized whole blood and culture samples. Samples were treated with ten selected chemical additives mainly sucrose, trehalose, LDH stabilizer and their combinations. After baseline activity was established, the samples were air dried in bio-safety cabinet and stored at room temperatures (~ 25 °C). Testing of the stabilized samples using SD Bioline, BinaxNOW, CareStart, and First Response was done at intervals for 53 weeks. RESULTS: Stability of HRP2 at ambient temperature was reported at 21-24 weeks while that of PAN antigens (pLDH and aldolase) was 2-18 weeks of storage at all parasite densities. The ten chemical additives increased the percentage stability of HRP2 and PAN antigens. Sucrose alone and its combinations with Alsever's solution or biostab significantly increased stability of HRP2 by 56% at 2000 p/µL (p < 0.001). Trehalose and its combinations with biostab, sucrose or glycerol significantly increased stability of HRP2 by 57% (p < 0.001). Unlike sucrose, the stability of the HRP2 was significantly retained by trehalose at lower concentrations (500, and 200 p/µL). Trehalose in combination biostab stabilizer increased the percentage stability of PAN antigens by 42, and 32% at 2000 and 500 p/µL respectively (p < 0.01). This was also the chemical combination with the shortest reconstitution time (~ < 20 min). CONCLUSIONS: These findings confirm that stabilizing RDT target antigens in dried P. falciparum-infected samples using chemical additives provides field-stable positive controls for malaria RDTs.


Assuntos
Cromatografia de Afinidade/métodos , Cromatografia de Afinidade/normas , Testes Diagnósticos de Rotina/métodos , Testes Diagnósticos de Rotina/normas , Malária Falciparum/diagnóstico , Sistemas Automatizados de Assistência Junto ao Leito , Padrões de Referência , Antígenos de Protozoários/imunologia , Humanos , L-Lactato Desidrogenase/imunologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Temperatura , Fatores de Tempo
8.
Malar J ; 16(1): 297, 2017 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-28738868

RESUMO

BACKGROUND: Early and accurate diagnosis of malaria is important in treatment as well as in the clinical evaluation of drugs and vaccines. Evaluation of Giemsa-stained smears remains the gold standard for malaria diagnosis, although diagnostic errors and potential bias estimates of protective efficacy have been reported in practice. Plasmodium genus fluorescent in situ hybridization (P-Genus FISH) is a microscopy-based method that uses fluorescent labelled oligonucleotide probes targeted to pathogen specific ribosomal RNA fragments to detect malaria parasites in whole blood. This study sought to evaluate the diagnostic performance of P-Genus FISH alongside Giemsa microscopy compared to quantitative reverse transcription polymerase chain reaction (qRT-PCR) in a clinical setting. METHOD: Five hundred study participants were recruited prospectively and screened for Plasmodium parasites by P-Genus FISH assay, and Giemsa microscopy. The microscopic methods were performed by two trained personnel and were blinded, and if the results were discordant a third reading was performed as a tie breaker. The diagnostic performance of both methods was evaluated against qRT-PCR as a more sensitive method. RESULTS: The number of Plasmodium positive cases was 26.8% by P-Genus FISH, 33.2% by Giemsa microscopy, and 51.2% by qRT-PCR. The three methods had 46.8% concordant results with 61 positive cases and 173 negative cases. Compared to qRT-PCR the sensitivity and specificity of P-Genus FISH assay was 29.3 and 75.8%, respectively, while microscopy had 58.2 and 93.0% respectively. Microscopy had a higher positive and negative predictive values (89.8 and 68.0% respectively) compared to P-Genus FISH (56.0 and 50.5%). In overall, microscopy had a good measure of agreement (76%, k = 0.51) compared to P-Genus FISH (52%, k = 0.05). CONCLUSION: The diagnostic performance of P-Genus FISH was shown to be inferior to Giemsa microscopy in the clinical samples. This hinders the possible application of the method in the field despite the many advantages of the method especially diagnosis of low parasite density infections. The P-Genus assay has great potential but application of the method in clinical setting would rely on extensive training of microscopist and continuous proficiency testing.


Assuntos
Hibridização in Situ Fluorescente , Malária/diagnóstico , Microscopia , Plasmodium/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Corantes Azur/metabolismo , Humanos , Quênia , Sensibilidade e Especificidade
9.
PLoS One ; 9(8): e105093, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25144772

RESUMO

BACKGROUND: Complement (C) is a crucial part of the innate immune system and becomes over activated during malaria, resulting in depletion of C components, especially those for lectin pathway (LP), thereby compromising the host's innate defense. In this study, involvement of P. falciparum antigens in C activation was investigated. METHODS: A highly synchronous culture of the Dd2 clone of P. falciparum was established in a serum free medium. Supernatants harvested from rings, trophozoites and schizonts at various parasite densities were tested for ability to activate C by quantifying amount of C3b deposited on erythrocytes (E). Uninfected sham culture was used as control. Remnants of each C pathway were determined using Wieslab complement System Screenkit (Euro-diagnostica, Sweden). To identify MBL binding antigens of LP, culture supernatants were added to MBL sepharose columns and trapped antigens eluted with increasing concentrations of EDTA (10 mM, 50 mM and 100 mM) and then desalted before being tested for ability to activate C. The EDTA eluate with highest activity was run on a polyacrylamide gel and silver stained proteins analyzed by mass spectroscopy. RESULTS: Antigens released by P. falciparum growing in culture activated C leading to C3b deposition on E. Maximal activation at 7% parasitemia was associated with schizont stage (36.7%) compared to 22% for rings, 21% for trophozoites and 3% for sham culture. All the three pathways of C were activated, with highest activation being for the alternative pathway (only 6% of C activation potential remained), 65% for classiical and 43% for the LP. Seven MBL binding merozoite proteins were identified by mass spectrometry in the 50 mM EDTA eluate. CONCLUSIONS: MBL binding merozoite adhesins with ability to activate C pathway were identified. The survival advantage for such pronounced C activation is unclear, but opsonisation could facilitate recognition and invasion of E.


Assuntos
Antígenos de Protozoários/imunologia , Merozoítos/imunologia , Plasmodium falciparum/imunologia , Animais , Ativação do Complemento/fisiologia , Espectrometria de Massas
10.
PLoS One ; 8(3): e56828, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23554856

RESUMO

BACKGROUND: Compared to expert malaria microscopy, malaria biomarkers such as Plasmodium falciparum histidine rich protein-2 (PfHRP-2), and PCR provide superior analytical sensitivity and specificity for quantifying malaria parasites infections. This study reports on parasite prevalence, sick visits parasite density and species composition by different diagnostic methods during a phase-I malaria vaccine trial. METHODS: Blood samples for microscopy, PfHRP-2 and Plasmodium lactate dehydrogenase (pLDH) ELISAs and real time quantitative PCR (qPCR) were collected during scheduled (n = 298) or sick visits (n = 38) from 30 adults participating in a 112-day vaccine trial. The four methods were used to assess parasite prevalence, as well as parasite density over a 42-day period for patients with clinical episodes. RESULTS: During scheduled visits, qPCR (39.9%, N = 119) and PfHRP-2 ELISA (36.9%, N = 110) detected higher parasite prevalence than pLDH ELISA (16.8%, N = 50) and all methods were more sensitive than microscopy (13.4%, N = 40). All microscopically detected infections contained P. falciparum, as mono-infections (95%) or with P. malariae (5%). By qPCR, 102/119 infections were speciated. P. falciparum predominated either as monoinfections (71.6%), with P. malariae (8.8%), P. ovale (4.9%) or both (3.9%). P. malariae (6.9%) and P. ovale (1.0%) also occurred as co-infections (2.9%). As expected, higher prevalences were detected during sick visits, with prevalences of 65.8% (qPCR), 60.5% (PfHRP-2 ELISA), 21.1% (pLDH ELISA) and 31.6% (microscopy). PfHRP-2 showed biomass build-up that climaxed (1813±3410 ng/mL SD) at clinical episodes. CONCLUSION: PfHRP-2 ELISA and qPCR may be needed for accurately quantifying the malaria parasite burden. In addition, qPCR improves parasite speciation, whilst PfHRP-2 ELISA is a potential predictor for clinical disease caused by P. falciparum. TRIAL REGISTRATION: ClinicalTrials.gov NCT00666380.


Assuntos
Antígenos de Protozoários/sangue , L-Lactato Desidrogenase/sangue , Vacinas Antimaláricas/administração & dosagem , Malária Falciparum/sangue , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/sangue , Adolescente , Adulto , Antígenos de Protozoários/genética , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Humanos , L-Lactato Desidrogenase/genética , Malária Falciparum/imunologia , Malária Falciparum/prevenção & controle , Masculino , Pessoa de Meia-Idade , Plasmodium falciparum/citologia , Plasmodium falciparum/genética , Plasmodium falciparum/imunologia , Plasmodium malariae/citologia , Plasmodium malariae/genética , Plasmodium malariae/metabolismo , Proteínas de Protozoários/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Sensibilidade e Especificidade , Fatores de Tempo
11.
Am J Trop Med Hyg ; 80(4): 516-22, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19346368

RESUMO

There is a need for more objective and quantitative tools to replace microscopy in malaria diagnosis. Emphasis has recently been placed on alternative methods such as immunochromatography-based rapid tests. However, these tests provide only qualitative results. Two bio-molecules, parasite lactate dehydrogenase (pLDH) and histidine-rich proteins (HRPs), that are released by the intra-erythrocytic stages of the parasite offer certain specific characteristics that could potentially improve malaria diagnosis. In this paper, we describe a protocol for a unified sandwich ELISA that allows for the separate but concurrent measurement of pLDH and HRP biomolecules in aliquots taken from the same samples. Freshly drawn blood from a healthy unexposed adult male was used to serially dilute in vitro cultivated and synchronized ring stage Plasmodium falciparum parasites. Commercially available ELISA formats were modified to allow for the measurement of pLDH and HRP from aliquots of the same samples. The pLDH and HRP levels in the samples spiked with known numbers of infected red blood cells (iRBCs) were measured, and the values were used to generate standard graphs. The standard graphs were used to estimate the numbers of iRBCs in test samples. Serially diluted recombinant proteins were similarly used to generate a calibration curve, allowing for the expression of test results in nanograms of their respective recombinant protein. Levels of pLDH and HRPs were determined by using 1) P. falciparum culture material (cells and medium) 2) P. falciparum infected human blood (N = 6) samples, and 3) plasma from P. falciparum-infected patient (N = 22) samples. The parasite density of all culture and infected patient samples was also estimated by microscopy. Both pLDH and HRP levels correlated positively with the parasite density assessed by microscopy: Pearson correlation coefficient pLDH (r = 0.754, P < 0.0001, 95% CI: 0.47-0.89); HRP (r = 0.552, P < 0.007, 95% CI: 0.16-0.79). The HRPs seem to be released in larger quantities than pLDH (in a ratio of ~1 pLDH:~6 HRP), making the detection of HRP in culture material, blood, and plasma easier. The modified ELISA assay with quantitative measurement of pLDH and HRPs may provide a valuable tool for malaria research and patient management.


Assuntos
Antígenos de Protozoários/análise , Ensaio de Imunoadsorção Enzimática/métodos , Lactato Desidrogenases/análise , Malária Falciparum/diagnóstico , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/análise , Animais , Antígenos de Protozoários/química , Humanos , Lactato Desidrogenases/química , Malária Falciparum/sangue , Malária Falciparum/parasitologia , Proteínas de Protozoários/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA